帳號:guest(3.146.35.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡伯霖
作者(外文):Jian, Bo-Lin
論文名稱(中文):微陣列平台上小分子檢測之可調控親和性半合成蛋白質開關
論文名稱(外文):Detection of Small Molecule with Affinity-Tunable Semisynthetic Protein Switches on Microarray Platform
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):林俊成
詹揚翔
口試委員(外文):Lin, Chun-Cheng
Chan, Yang-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023563
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:181
中文關鍵詞:微陣列蛋白質開關生物素鏈黴親和素小分子檢測
外文關鍵詞:MicroarrayProtein switchBiotinStreptavidinSmall moleculeDetection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今科學與醫療的發展日新月異,有許多新型態之檢測生物分子的方法被提出並備受矚目。其中,微陣列技術(Microarray)已廣泛被應用於醫學診斷和生物學研究,包括單核苷酸多態性(SNP)檢測、基因表達譜、比較基因組雜交和表位作圖等。與其他現有的分析方法相比,微陣列主要有小型化、高通量、並行性、快速、多功能和低成本等優點。儘管微陣列技術可迅速且同時篩選和分析多種分析物,但大多數分析物僅限於大分子,例如蛋白質、抗體以及核酸等。因此在這篇論文中,我們開發出一種基於微陣列平台上的半合成蛋白質開關,以調控親和力的方式來偵測小分子。其原理是利用小分子與配體競爭結合位點,進而調控生物素與鏈黴親和素的結合能力。
在尚未添加小分子分析物時,由於生物素衍生物周圍空間的立障較大,無法與修飾有螢光基團的鏈黴親和素結合,訊號呈現關閉狀態;當添加小分子分析物後,即消除生物素衍生物周圍的空間立障,而修飾有螢光基團的鏈黴親和素則可與其結合,此時訊號呈現開啟狀態。藉此,我們利用該訊號表達的機制、探針模塊化的特性和微陣列技術的優點,來達到偵測不同小分子的目的。基於這項設計,我們相信半合成蛋白質開關與微陣列技術的結合可以成為未來檢測各種重要生物小分子的實用分析平台。
Nowadays, with the rapid development of science and medical treatments, numerous novel techniques for detecting biomolecules have been developed and attracted wide attention. Among them, microarray technology has been widely used in medical diagnosis and biology research, including single nucleotide polymorphism (SNP) genotyping, gene expression profiling, comparative genomic hybridization, and epitope mapping. Compared with other traditional analysis methods, microarray have the advantages of miniaturization, high throughput, parallelism, rapidity, versatility, and inexpensive.
Although microarray technique enables screening and analyzing multiple analytes rapidly and simultaneously, most analytes are limited to macromolecules, for example, proteins, antibodies, and nucleic acids. Therefore, we developed an affinity-tunable semisynthetic protein switches based on microarray platform to detect small molecules, utilizing the competition between small molecules and ligands to regulate the binding affinity of biotin and streptavidin.
In the absence of a small molecule target, biotin cannot bind to the streptavidin due to the large steric hindrance around the biotin derivative. Therefore, the signal is turned off. If an analyte is present, the steric hindrance around the biotin derivative will be removed. Thus, the streptavidin can bind to the biotin, and the signal will be turned on. In this way, we use this new signal transduction mechanism and modular design on microarray to detect various small molecules. Based on this design, we believe that the combination of semisynthetic protein switches and microarray detection system can become the practical analysis platform for detecting various important small biomolecules in the future.
摘要 I
Abstract II
謝誌 III
目錄 VI
第一章、緒論 1
1-1 小分子介紹 1
1-1.1 常見生物小分子 2
1-1.2 神經傳遞物質 3
1-1.3 小分子藥物 5
1-2 檢測小分子之方法 6
1-2.1 核磁共振光譜分析法 7
1-2.2 液相層析質譜分析法 9
1-2.3 酵素結合免疫吸附分析法 11
第二章、文獻回顧 13
2-1 微陣列 14
2-1.1 DNA微陣列 15
2-1.2 抗體微陣列 18
2-1.3 蛋白質-配體微陣列 20
2-2 蛋白質開關 22
2-2.1 G蛋白偶聯受體 22
2-2.2 核受體 24
2-3 合成蛋白質開關 25
2-3.1 螢光蛋白質開關 25
2-3.2 酶蛋白質開關 28
第三章、探針設計 32
3-1 設計構想 32
3-2 合成設計與策略 37
3-2.1 固定端 38
3-2.2 配體端 38
3-2.3 反應端 40
3-3 探針結構與運作機制 41
第四章、實驗結果及討論 44
4-1 探針1之合成與實驗結果 44
4-1.1 探針1之合成 44
4-1.2 探針1之實驗結果 46
4-2 探針2之合成與實驗結果 50
4-2.1 探針2之合成 50
4-2.2 探針2之實驗結果 52
4-3 探針3之合成與實驗結果 58
4-3.1 探針3之合成 58
4-3.2 探針3之實驗結果 60
第五章、實驗結論 63
第六章、實驗部分 64
6-1 實驗器材與藥品 64
6-2 微陣列實驗 66
6-3 有機合成及光譜資料 67
第七章、參考資料 93
附錄 101



1. Macielag, M. J. Chemical properties of antimicrobials and their uniqueness. In Antibiotic discovery and development, 2012; pp 793-820.
2. Samanen, J. Chapter 5.2 How do SMDs differ from biomolecular drugs. In Introduction to biological and small molecule drug research and development, 2013; pp 5-35.
3. Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45 (12), 2615-2623.
4. Park, Y. K.; Yetley, E. A. Intakes and food sources of fructose in the United States. Am. J. Clin. Nutr. 1993, 58 (5), 737S-747S.
5. EFSA Panel on Dietetic Products, N.; Allergies. Scientific Opinion on the substantiation of health claims related to resistant starch and reduction of post‐prandial glycaemic responses (ID 681),“digestive health benefits”(ID 682) and “favours a normal colon metabolism”(ID 783) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9 (4), 2024.
6. EFSA Panel on Nutrition, N. F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch‐Ernst, K. I.; Knutsen, H. K.; Maciuk, A.; Mangelsdorf, I.; et al. Tolerable upper intake level for dietary sugars. EFSA J. 2022, 20 (2), e07074.
7. Meldrum, B. S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 2000, 130 (4), 1007S-1015S.
8. McEntee, W. J.; Crook, T. H. Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology 1993, 111 (4), 391-401.
9. Han, G.; Takahashi, H.; Murao, N.; Gheni, G.; Yokoi, N.; Hamamoto, Y.; Asahara, S. i.; Seino, Y.; Kido, Y.; Seino, S. Glutamate is an essential mediator in glutamine‐amplified insulin secretion. J. Diabetes Investig. 2021, 12 (6), 920-930.
10. Hanukoglu, I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 1992, 43 (8), 779-804.
11. Brunzell, J. D.; Davidson, M.; Furberg, C. D.; Goldberg, R. B.; Howard, B. V.; Stein, J. H.; Witztum, J. L. Lipoprotein management in patients with cardiometabolic risk: consensus conference report from the American Diabetes Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 2008, 51 (15), 1512-1524.
12. Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Neurotransmitters, synapses, and impulse transmission. In Molecular Cell Biology. 4th edition, WH Freeman, 2000.
13. Elias, L.; Saucier, D. Neuropsychology: Clinical and Experimental Foundations: Pearson New International Edition; Pearson Higher Ed, 2013.
14. Berridge, K. C. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 2007, 191, 391-431.
15. Wise, R. A.; Robble, M. A. Dopamine and addiction. Annu. Rev. Psychol. 2020, 71, 79-106.
16. Hardeland, R.; Pandi-Perumal, S.; Cardinali, D. P. Melatonin. Int. J. Biochem 2006, 38 (3), 313-316.
17. Faraone, S. V.; Antshel, K. M. ADHD: Non-pharmacologic interventions. Child Adolesc. Psychiatr. Clin. N. Am. 2014, 23 (4), xiii-xiv.
18. Auld, F.; Maschauer, E. L.; Morrison, I.; Skene, D. J.; Riha, R. L. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev. 2017, 34, 10-22.
19. Riha, R. L. The use and misuse of exogenous melatonin in the treatment of sleep disorders. Curr. Opin. Pulm. Med. 2018, 24 (6), 543-548.
20. Huang, Z.-L.; Urade, Y.; Hayaishi, O. The role of adenosine in the regulation of sleep. Curr. Top. Med. Chem. 2011, 11 (8), 1047-1057.
21. Huang, Z.-L.; Zhang, Z.; Qu, W.-M. Roles of adenosine and its receptors in sleep–wake regulation. Int. Rev. Neurobiol. 2014, 119, 349-371.
22. Sato, A.; Terata, K.; Miura, H.; Toyama, K.; Loberiza Jr, F. R.; Hatoum, O. A.; Saito, T.; Sakuma, I.; Gutterman, D. D. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am. J. Physiol. Heart Circ. Physiol. 2005, 288 (4), H1633-H1640.
23. Costa, F.; Biaggioni, I. Role of nitric oxide in adenosine-induced vasodilation in humans. Hypertension 1998, 31 (5), 1061-1064.
24. Morgan, J.; McCormack, D.; Griffiths, M.; Morgan, C.; Barnes, P.; Evans, T. Adenosine as a vasodilator in primary pulmonary hypertension. Circulation 1991, 84 (3), 1145-1149.
25. Barreiro, C.; García-Estrada, C. Proteomics and Penicillium chrysogenum: Unveiling the secrets behind penicillin production. J. Proteomics 2019, 198, 119-131.
26. Yip, D. W.; Gerriets, V. Penicillin; StatPearls Publishing, 2020.
27. Ayres, J. Ibuprofen. The American Society of Health-System Pharmacists. Lancet 1987, 1 (8541), 1082.
28. Stiehm, E. R.; Lambert, J. S.; Mofenson, L. M.; Bethel, J.; Whitehouse, J.; Nugent, R.; Moye Jr, J.; Fowler, M. G.; Mathieson, B. J.; Reichelderfer, P. Efficacy of zidovudine and human immunodeficiency virus (HIV) hyperimmune immunoglobulin for reducing perinatal HIV transmission from HIV-infected women with advanced disease: results of Pediatric AIDS Clinical Trials Group protocol 185. J. Infect. Dis. 1999, 179 (3), 567-575.
29. Kupiec, K. E.; Johnson, J. W.; Barroso, L. F.; Wrenn, R. H.; Williamson, J. C. Zidovudine as modern day salvage therapy for HIV infection. AIDS Patient Care STDS 2014, 28 (11), 570-574.
30. Manager of Nuclear Magnetic Resonance Facility, M. W. A. C., . History of NMR. https://web.archive.org/web/20140127183200/http://www.nmr.unsw.edu.au/usercorner/nmrhistory.htm.
31. BYJU'S Learning Program. What is NMR Spectroscopy? NMR Spectroscopy (Nuclear Magnetic Resonance). https://byjus.com/chemistry/nmr-spectroscopy/.
32. Kotelnikova, Z. Explaining counterfeit alcohol purchases in Russia. Alcohol.: Clin. Exp. Res. 2017, 41 (4), 810-819.
33. Forzley, M. Counterfeit goods and the public's health and safety; 2003.
34. Neufeld, M.; Lachenmeier, D. W.; Walch, S. G.; Rehm, J. The internet trade of counterfeit spirits in Russia–an emerging problem undermining alcohol, public health and youth protection policies? F1000Research 2017, 6.
35. Lachenmeier, D. W.; Kanteres, F.; Rehm, J. Alcoholic beverage strength discrimination by taste may have an upper threshold. Alcohol.: Clin. Exp. Res. 2014, 38 (9), 2460-2467.
36. Kuballa, T.; Hausler, T.; Okaru, A. O.; Neufeld, M.; Abuga, K. O.; Kibwage, I. O.; Rehm, J.; Luy, B.; Walch, S. G.; Lachenmeier, D. W. Detection of counterfeit brand spirits using 1H NMR fingerprints in comparison to sensory analysis. Food Chem. 2018, 245, 112-118.
37. Conduct Science. Nuclear Magnetic Resonance Spectroscopy. https://conductscience.com/nuclear-magnetic-resonance-spectroscopy/.
38. Arpino, P. History of LC-MS development and interfacing. In The Encyclopedia of Mass Spectrometry, Vol. 8; 2006; pp 133-145.
39. Emery Pharma. Liquid Chromatography Mass Spectrometry (LC-MS) Analysis. https://emerypharma.com/solutions/analytical-services/lcms-analysis/.
40. van de Merbel, N. C.; Hendriks, G.; Imbos, R.; Tuunainen, J.; Rouru, J.; Nikkanen, H. Quantitative determination of free and total dopamine in human plasma by LC–MS/MS: the importance of sample preparation. Bioanalysis 2011, 3 (17), 1949-1961.
41. Nichkova, M.; Wynveen, P. M.; Marc, D. T.; Huisman, H.; Kellermann, G. H. Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopamine‐related disorders. J. Neurochem. 2013, 125 (5), 724-735.
42. Zhang, D.; Wu, L.; Chow, D. S.; Tam, V. H.; Rios, D. R. Quantitative determination of dopamine in human plasma by a highly sensitive LC–MS/MS assay: Application in preterm neonates. J. Pharm. Biomed. Anal. 2016, 117, 227-231.
43. Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay, ELISA: III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J. Immun. 1972, 109 (1), 129-135.
44. Zhan, S.; Hu, J.; Li, Y.; Huang, X.; Xiong, Y. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B1 in corn samples. Food Chem. 2021, 342, 128327.
45. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32-42.
46. Grunstein, M.; Hogness, D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. U.S.A. 1975, 72 (10), 3961-3965.
47. Gergen, J. P.; Stern, R. H.; Wensink, P. C. Filter replicas and permanent collections of recombinant DNA plasmids. Nucleic Acids Res. 1979, 7 (8), 2115-2136.
48. Miller, J. C.; Zhou, H.; Kwekel, J.; Cavallo, R.; Burke, J.; Butler, E. B.; Teh, B. S.; Haab, B. B. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 2003, 3 (1), 56-63.
49. Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N. Recent discoveries and applications involving small-molecule microarrays. Curr. Opin. Chem. Biol. 2014, 18, 21-28.
50. Arenkov, P.; Kukhtin, A.; Gemmell, A.; Voloshchuk, S.; Chupeeva, V.; Mirzabekov, A. Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 2000, 278 (2), 123-131.
51. Creative Biolabs Exosome. Exosomal mRNA Microarray. https://www.creative-biolabs.com/exosome/exosomal-mrna-microarray.htm.
52. Debouck, C.; Goodfellow, P. N. DNA microarrays in drug discovery and development. Nat. Genet. 1999, 21 (1), 48-50.
53. Khan, J.; Saal, L. H.; Bittner, M. L.; Chen, Y.; Trent, J. M.; Meltzer, P. S. Expression profiling in cancer using cDNA microarrays. Electrophoresis 1999, 20 (2), 223-229.
54. Bioninja. DNA Microarrays. https://ib.bioninja.com.au/options/untitled/b4-medicine/dna-microarrays.html.
55. Sakai, K.; Yada, K.; Sakabe, G.; Tani, O.; Miyaji, K.; Nakamura, M.; Takehara, K. Serological and virological studies of Newcastle disease and avian influenza in slaughter-age ostriches (Struthio camelus) in Japan. J. Vet. Med. Sci. 2006, 68 (5), 491-494.
56. Dhingra, M. S.; Artois, J.; Dellicour, S.; Lemey, P.; Dauphin, G.; Von Dobschuetz, S.; Van Boeckel, T. P.; Castellan, D. M.; Morzaria, S.; Gilbert, M. Geographical and historical patterns in the emergences of novel highly pathogenic avian influenza (HPAI) H5 and H7 viruses in poultry. Front. Vet. Sci. 2018, 5, 84.
57. Li, X.; Zhang, Z.; Yu, A.; Ho, S. Y.; Carr, M. J.; Zheng, W.; Zhang, Y.; Zhu, C.; Lei, F.; Shi, W. Global and local persistence of influenza A (H5N1) virus. Emerging Infect. Dis. 2014, 20 (8), 1287.
58. Xiao, Q.; Yan, L.; Yao, L.; Lei, J.; Bi, Z.; Hu, J.; Chen, Y.; Fang, A.; Li, H.; Li, Y. Development of oligonucleotide microarray for accurate and simultaneous detection of avian respiratory viral diseases. BMC Vet. Res. 2019, 15, 1-11.
59. Alhamdani, M. S.; Schröder, C.; Hoheisel, J. D. Oncoproteomic profiling with antibody microarrays. Genome Med. 2009, 1 (7), 1-7.
60. Ingvarsson, J.; Wingren, C.; Carlsson, A.; Ellmark, P.; Wahren, B.; Engström, G.; Harmenberg, U.; Krogh, M.; Peterson, C.; Borrebaeck, C. A. Detection of pancreatic cancer using antibody microarray‐based serum protein profiling. Proteomics 2008, 8 (11), 2211-2219.
61. Haab, B. B. Methods and applications of antibody microarrays in cancer research. Proteomics 2003, 3 (11), 2116-2122.
62. Diao, B.; Wen, K.; Zhang, J.; Chen, J.; Han, C.; Chen, Y.; Wang, S.; Deng, G.; Zhou, H.; Wu, Y. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin. Microbiol. Infect. 2021, 27 (2), 289. e281-289. e284.
63. Pickering, S.; Batra, R.; Merrick, B.; Snell, L. B.; Nebbia, G.; Douthwaite, S.; Reid, F.; Patel, A.; Ik, M. T. K.; Patel, B. Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study. Lancet Microbe 2021, 2 (9), e461-e471.
64. Shidlovskaya, E. V.; Kuznetsova, N. A.; Divisenko, E. V.; Nikiforova, M. A.; Siniavin, A. E.; Ogarkova, D. A.; Shagaev, A. V.; Semashko, M. A.; Tkachuk, A. P.; Burgasova, O. A. The value of rapid antigen tests for identifying carriers of viable SARS-CoV-2. Viruses 2021, 13 (10), 2012.
65. Kampf, G.; Lemmen, S.; Suchomel, M. Ct values and infectivity of SARS-CoV-2 on surfaces. Lancet Infect. Dis. 2021, 21 (6), e141.
66. Coyle, P. V.; Molawi, N. H. A.; Kacem, M. A. B. H.; Kahlout, R. A. E.; Kuwari, E. A.; Khal, A. A.; Gilliani, I.; Jeremijenko, A.; Saeb, H.; Thani, S. M. A. Inclusion of cycle threshold (CT) values when reporting SARS-CoV-2 RT-PCR results improves clinical Interpretation in suspected and confirmed COVID-19. medRxiv 2021, 2021.2002. 2011.21251557.
67. Beck, S.; Nakajima, R.; Jasinskas, A.; Abram, T. J.; Kim, S. J.; Bigdeli, N.; Tifrea, D. F.; Hernandez-Davies, J.; Huw Davies, D.; Hedde, P. N. A Protein Microarray-Based Respiratory Viral Antigen Testing Platform for COVID-19 Surveillance. Biomedicines 2022, 10 (9), 2238.
68. Bradner, J. E.; McPherson, O. M.; Koehler, A. N. A method for the covalent capture and screening of diverse small molecules in a microarray format. Nat. Protoc. 2006, 1 (5), 2344-2352.
69. Vegas, A. J.; Fuller, J. H.; Koehler, A. N. Small-molecule microarrays as tools in ligand discovery. Chem. Soc. Rev. 2008, 37 (7), 1385-1394.
70. Sadaghiani, A. M.; Lee, S. M.; Odegaard, J. I.; Leveson-Gower, D. B.; McPherson, O. M.; Novick, P.; Kim, M. R.; Koehler, A. N.; Negrin, R.; Dolmetsch, R. E. Identification of Orai1 channel inhibitors by using minimal functional domains to screen small molecule microarrays. Chem. Biol. 2014, 21 (10), 1278-1292.
71. Alberstein, R. G.; Guo, A. B.; Kortemme, T. Design principles of protein switches. Curr. Opin. Struct. Biol. 2022, 72, 71-78.
72. Rasmussen, S. G.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 2011, 477 (7366), 549-555.
73. Stewart, A.; Fisher, R. A. Introduction: G protein-coupled receptors and RGS proteins. Prog. Mol. Biol. Transl. Sci. 2015, 133, 1-11.
74. Clark, R. B. Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel Laureates in Chemistry. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (14), 5274-5275.
75. Jähnichen, S. Activation cycle of G-proteins by G-protein-coupled receptors. https://en.wikipedia.org/wiki/G_protein#/media/File:GPCR-Zyklus.png.
76. Nagy, L.; Schwabe, J. W. Mechanism of the nuclear receptor molecular switch. Trends Biochem. Sci. 2004, 29 (6), 317-324.
77. Weikum, E. R.; Liu, X.; Ortlund, E. A. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018, 27 (11), 1876-1892.
78. Boghog2. Structural Organization of Nuclear Receptors. https://en.wikipedia.org/wiki/Nuclear_receptor#/media/File:Nuclear_Receptor_Structure.png.
79. Wu, C.-C.; Huang, S.-J.; Fu, T.-Y.; Lin, F.-L.; Wang, X.-Y.; Tan, K.-T. Small-Molecule Modulated Affinity-Tunable Semisynthetic Protein Switches. ACS Sens. 2022, 7 (9), 2691-2700.
80. Kostyuk, A. I.; Demidovich, A. D.; Kotova, D. A.; Belousov, V. V.; Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int. J. Mol. Sci. 2019, 20 (17), 4200.
81. Ahmad, M.; Anjum, N. A.; Asif, A.; Ahmad, A. Real-time monitoring of glutathione in living cells using genetically encoded FRET-based ratiometric nanosensor. Sci. Rep. 2020, 10 (1), 992.
82. Hu, H.; Wei, Y.; Wang, D.; Su, N.; Chen, X.; Zhao, Y.; Liu, G.; Yang, Y. Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Adv. 2018, 8 (5), 2485-2489.
83. Brun, M. A.; Griss, R.; Reymond, L.; Tan, K.-T.; Piguet, J.; Peters, R. J.; Vogel, H.; Johnsson, K. Semisynthesis of fluorescent metabolite sensors on cell surfaces. J. Am. Chem. Soc. 2011, 133 (40), 16235-16242.
84. Guntas, G.; Mansell, T. J.; Kim, J. R.; Ostermeier, M. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (32), 11224-11229.
85. Stein, V.; Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 2015, 33 (2), 101-110.
86. Schena, A.; Griss, R.; Johnsson, K. Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nat. Commun. 2015, 6 (1), 7830.
87. Banala, S.; Aper, S. J.; Schalk, W.; Merkx, M. Switchable reporter enzymes based on mutually exclusive domain interactions allow antibody detection directly in solution. ACS Chem. Biol. 2013, 8 (10), 2127-2132.
88. Pavlov, V.; Shlyahovsky, B.; Willner, I. Journal of the Chemical Society. J. Am. Chem. Soc. 2005, 127 (18), 6522-6523.
89. Pacheco-Alvarez, D.; Solórzano-Vargas, R. S.; Del Rı́o, A. L. Biotin in metabolism and its relationship to human disease. Arch. Med. Res. 2002, 33 (5), 439-447.
90. Green, N. M. Avidin. In Advances in protein chemistry, Vol. 29; Elsevier, 1975; pp 85-133.
91. Chen, Y.-H.; Chien, W.-C.; Lee, D.-C.; Tan, K.-T. Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal. Chem. 2019, 91 (19), 12461-12467.
92. Liu, F.; Zhang, J. Z.; Mei, Y. The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations. Sci. Rep. 2016, 6 (1), 1-11.
93. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational development of caged-biotin protein-labeling agents and some applications in live cells. Chem. Biol. 2011, 18 (10), 1261-1272.
94. Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T. Target-activated streptavidin–biotin controlled binding probe. Chem. Sci. 2018, 9 (3), 770-776.
95. Wu, C. L.; Fan, C. Y.; Lin, C. C.; Tan, K. T. Affinity‐switchable biotin probes for the analysis of enzymes and small reactive molecules on microarray platform. J. Chin. Chem. Soc. 2021, 68 (2), 291-297.
96. Mishra, C. B.; Tiwari, M.; Supuran, C. T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med. Res. Rev. 2020, 40 (6), 2485-2565.
97. MacLeod, C. M. The inhibition of the bacteriostatic action of sulfonamide drugs by substances of animal and bacterial origin. J. Exp. Med. 1940, 72 (3), 217.
98. Kim, C. U., Kim, J.K. Human carbonic anhydrase II with bound Zinc and carbon dioxide. https://upload.wikimedia.org/wikipedia/commons/d/d2/Human_carbonic_anhydrase_II_PDB%3D6LUX.png.
99. Innocenti, A.; Sarıkaya, S. B. Ö.; Gülçin, I.; Supuran, C. T. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Bioorg. Med. Chem. 2010, 18 (6), 2159-2164.
100. Roth, B.; Falco, E. A.; Hitchings, G. H.; Bushby, S. 5-Benzyl-2, 4-diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activity in vitro. J. Med. Chem. 1962, 5 (6), 1103-1123.
101. GENERAL & FAMILY MEDICINE. Mode of Action and Selectivity. Trimethoprim. https://basicmedicalkey.com/trimethoprim/.
102. Ribbon diagram of human dihydrofolate reductase in complex with folate. https://upload.wikimedia.org/wikipedia/commons/1/14/Dihydrofolate_reductase_1DRF.png.
103. Crivat, G.; Taraska, J. W. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 2012, 30 (1), 8-16.
104. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein− ligand binding. Chem. Rev. 2008, 108 (3), 946-1051.
105. Maren, T. H.; Brechue, W. F.; Bar-Ilan, A. Relations among IOP reduction, ocular disposition and pharmacology of the carbonic anhydrase inhibitor ethoxzolamide. Exp. Eye Res. 1992, 55 (1), 73-79.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *