帳號:guest(18.226.104.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙源鈞
作者(外文):Jhao, Yuan-Jyun
論文名稱(中文):以時間解析紅外吸收光譜法研究甲醇和甲二醇於光解亞硝酸根水溶液中之反應性比較
論文名稱(外文):A Comparative Study of the Reactivities of Methanol and Methanediol in the Photolysis of Aqueous Nitrite Solution
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):張智煒
黃正良
口試委員(外文):Chang, Chih-Wei
Huang, Cheng-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023559
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:123
中文關鍵詞:亞硝酸鹽甲二醇甲醇步進式掃描紅外光譜儀瞬態吸收光譜光解反應
外文關鍵詞:NitriteMethylene glycolMethanolStep-scan FTIRTransient absorption spectroscopyPhotolysis reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
濕氣膠能提供水相反應環境並表現出與氣相環境不同之反應性。而亞硝酸根為濕氣膠的組成鹽類之一,且其光解後會產生氫氧(OH) 與一氧化氮(NO) 自由基及後續生成之一系列NxOy 物種。此外,於濕氣溶膠中亦可能存在一元醇(例如甲醇) 及偕二醇(例如甲醛水合產生之甲二醇) 等醇類。若兩者同時存於濕氣膠時,所涉及與OH 自由基以及後續NxOy 物種的反應性差異尚未被討論。因此吾人將以步進式時間解析紅外光譜儀觀測含有不同濃度甲醇或甲二醇之亞硝酸鈉混合水溶液受355 nm 脈衝雷射激發後的時間解析紅外差異吸收光譜,並藉由觀測亞硝酸根光解後產生的三氧化二氮生成量與消逝速率以瞭解甲醇和甲二醇之反應性差異。吾人發現加入不同濃度甲醇或甲二醇並不影響三氧化二氮生成,且由於氫氧自由基和亞硝酸根的一系列反應可生成三氧化二氮,故推測甲醇和甲二醇上之Hα 對於氫氧自由基並無反應性差異,亦即甲二醇上之兩羥基官能基無提升Hα 對於氫氧自由基的反應性。此外,加入甲醇後會延緩三氧化二氮消逝,與含有甲二醇之樣品不同,推測甲二醇上之兩羥基官能基可在甲醛與水的快速平衡中作為水的儲存槽並提供與水類似的反應環境,參與水解溶劑化反應。此研究可提供在研究偕二醇反應時,應考慮其可能表現出與一元醇不同之反應性,以及研究與甲醛相關反應時,應考慮其水合與非水合間之反應性差異。
Aqueous aerosol provides an aqua-based environment for chemical reactions. Nitrite (NO2-) is one in the constituent in aqueous aerosol, and it could generate hydroxyl (OH) and nitric oxide (NO) radicals and a series of subsequent NxOy species upon photolysis. Generally, the aqueous aerosol also contains alcohols such as monobasic alcohols, e.g., methanol (CH3OH), and geminal diols, e.g., methanediol (CH2(OH)2), which was produced by hydration of formaldehyde (CH2O). While nitrite and CH3OH/CH2(OH)2 are present in the aqueous aerosol, the differences in the reactivity of CH3OH or CH2(OH)2 with OH radicals and subsequent NxOy species have not been sufficiently studied. In this work, a step-scan Fourier transfer interferometer was employed to probe the time-resolved infrared difference absorption spectra of the NaNO2 solution containing different concentrations of CH3OH or CH2(OH)2 upon 355 nm pulsed excitation. By measuring the generation and decay rates of dinitrogen trioxide (N2O3) after photolysis of NO2– for comparing the reactivity differences in CH3OH and CH2(OH)2, we found that the presence of different concentrations of CH3OH or CH2(OH)2 cause similar amounts of transient N2O3. As N2O3 can be generated from a series of reactions between OH radicals and NO2–, the similar population of N2O3 suggested that there is no significant difference in the reactivity of CH3OH and CH2(OH)2 with OH; that is, the two hydroxyl functional groups on CH2(OH)2 can not enhance the reactivity of Hα with OH radical. In addition, the presence of CH3OH retarded the decay of N2O3 more than CH2(OH)2. The mono-hydroxyl group on CH3OH does not behave like the hydroxyl group of water, whereas the two hydroxyl groups at CH2(OH)2 can be treated as the water reservoir, via the quick equilibrium between H2O and CH2O, for the hydrolytic solvation reaction of N2O3. In this study, the reactivities of geminal diols could be different from those of monobasic alcohols in different chemical reactions, e.g., Hα abstract and hydration. Besides, the difference in reaction kinetics involving hydration should be thoroughly taken into account when studying formaldehyde-related reactions.
第一章緒論. . . . . . . . . . . . . . 1
1.1 氣溶膠之性質及在大氣中的重要性. . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 氣溶膠的來源、種類與組成. . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 濕氣膠提供之反應環境. . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 環境中NO –
2 的來源及重要性. . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 NO –
2 於水相的光解反應. . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 與OH 和NO 自由基相關之反應及重要性. . . . . . . . . . . . . . 5
1.3 CH2(OH)2 於大氣中的來源. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 CH2(OH)2 之聚合反應. . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 CH2(OH)2 與OH 自由基反應的重要性. . . . . . . . . . . . . . . . 7
1.4 大氣中CH3OH 的來源及其與OH 自由基反應的重要性. . . . . . . . . . . 8
1.5 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
第二章光譜技術原理、實驗系統架設及樣品溶液配製30
2.1 光譜技術原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.1 吸收光譜法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 紫外/可見光吸收光譜法. . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 傅立葉轉換紅外光譜法. . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3.1 麥克森干涉儀. . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3.2 單色光與多色光干涉. . . . . . . . . . . . . . . . . . . . . 32
2.1.3.3 傅立葉轉換. . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.3.4 截斷函數與削足函數. . . . . . . . . . . . . . . . . . . . . 34
2.1.3.5 相位誤差與相位校正. . . . . . . . . . . . . . . . . . . . . 36
2.1.3.6 連續式掃描模式. . . . . . . . . . . . . . . . . . . . . . . 37
2.1.4 衰減全反射傅立葉轉換紅外光譜法. . . . . . . . . . . . . . . . . . 38
2.1.5 步進式掃描時間解析傅立葉轉換紅外光譜法. . . . . . . . . . . . . 39
2.1.5.1 工作原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.5.2 跳點取樣. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.5.3 AC/DC 耦合數據擷取處理. . . . . . . . . . . . . . . . . . 41
2.2 實驗系統架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 穩態光譜儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1.1 穩態紫外/可見光吸收光譜儀. . . . . . . . . . . . . . . . 42
2.2.1.2 衰減全反射式傅立葉轉換紅外光譜儀. . . . . . . . . . . 43
2.2.2 時間解析紅外差異吸收光譜之實驗系統架設. . . . . . . . . . . . . 43
2.2.2.1 雷射激發系統. . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2.2 樣品槽. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2.3 樣品推進系統. . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2.4 步進式掃描時間解析傅立葉轉換紅外光譜儀. . . . . . . 44
2.2.2.5 數據擷取系統. . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3 儀器參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 穩態紫外/可見光吸收光譜. . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 衰減全反射式傅立葉轉換紅外光譜. . . . . . . . . . . . . . . . . . 46
2.3.3 步進式掃描時間解析傅立葉轉換紅外光譜. . . . . . . . . . . . . . 47
2.4 樣品溶液配製. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 NaNO2 水溶液. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 (CH2O)n 水溶液. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.3 NaNO2/(CH2O)n 之混合水溶液. . . . . . . . . . . . . . . . . . . . . 49
2.4.4 NaNO2/CH3OH 之混合水溶液. . . . . . . . . . . . . . . . . . . . . 51
第三章理論計算75
3.1 計算方法、基底函數和溶劑效應. . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 相關分子的最佳化結構與預測非簡諧振動波數. . . . . . . . . . . . . . . . 75
第四章實驗結果與討論80
4.1 穩態紫外/可見與紅外光吸收光譜. . . . . . . . . . . . . . . . . . . . . . . 80
4.2 時間解析紅外差異吸收光譜. . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 NaNO2 水溶液之光解反應. . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 添加不同濃度CH3OH 或(CH2O)n 之NaNO2 水溶液的光解反應. . 83
4.3 動力學分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
第五章結論. . . . . . . . . . . . . . . . . . . 101
附錄. . . . . . . . . . . . . . . . . . . A1
第一章
(1) Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540.
(2) George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258.
(3) Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A.; Hansen, J. E.; Hofmann, D. J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430.
(4) Taylor, K. E.; Penner, J. E. Response of the Climate System to Atmospheric Aerosols and Greenhouse Gases. Nature 1994, 369, 734–737.
(5) Rosenfeld, D.; Sherwood, S.; Wood, R.; Donner, L. Climate Effects of Aerosol-Cloud Interactions. Science 2014, 343, 379–380.
(6) Medina-Ramón, M.; Zanobetti, A.; Schwartz, J. The Effect of Ozone and PM10 on Hospital Admissions for Pneumonia and Chronic Obstructive Pulmonary Disease: A National Multicity Study. Am. J. Epidemiol. 2006, 163, 579–588.
(7) Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371.
(8) Shiraiwa, M. et al. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567.
(9) O’Dowd, C. D.; de Leeuw, G. Marine Aerosol Production: A Review of the Current Knowledge. Phil. Trans. R. Soc. A. 2007, 365, 1753–1774.
(10) Després, V.; Huffman, J.; Burrows, S. M.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Pöschl, U.; Jaenicke, R. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B: Chem. Phys. Meteorol. 2012, 64, 15598.
(11) Szidat, S.; Jenk, T. M.; Synal, H.-A.; Kalberer, M.; Wacker, L.; Hajdas, I.; Kasper-Giebl, A.; Baltensperger, U. Contributions of Fossil Fuel, Biomass-Burning, and Biogenic Emissions to Carbonaceous Aerosols in Zurich as Traced by 14C. J. Geophys. Res. 2006, 111, D07206.
(12) Pandis, S. N.; Wexler, A. S.; Seinfeld, J. H. Dynamics of Tropospheric Aerosols. J. Phys. Chem. 1995, 99, 9646–9659.
(13) Koziel, J. A.; Aneja, V. P.; Baek, B.-H. Gas-to-Particle Conversion Process Between
Ammonia, Acid Gases, and Fine Particles in the Atmosphere; 2006, pp 201–224.
(14) Ziemann, P. J.; Atkinson, R. Kinetics, Products, and Mechanisms of Secondary Organic
Aerosol Formation. Chem. Soc. Rev. 2012, 41, 6582.
(15) McNeill, V. F. Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical
Processing of Organic Aerosols. Environ. Sci. Technol. 2015, 49, 1237–1244.
(16) Ervens, B.; Turpin, B. J.; Weber, R. J. Secondary Organic Aerosol Formation in Cloud
Droplets and Aqueous Particles (aqSOA): A Review of Laboratory, Field and Model
Studies. Atmos. Chem. Phys. 2011, 11, 11069–11102.
(17) Kolb, C. E. et al. An Overview of Current Issues in the Uptake of Atmospheric Trace
Gases by Aerosols and Clouds. Atmos. Chem. Phys. 2010, 10, 10561–10605.
(18) Valsaraj, K. T. A Review of the Aqueous Aerosol Surface Chemistry in the Atmospheric
Context. Open J. Phys. Chem. 2012, 02, 58–66.
(19) Watanabe, H.; Yamaguchi, S.; Sen, S.; Morita, A.; Tahara, T. “Half-Hydration"at the
Air/Water Interface Revealed by Heterodyne-Detected Electronic Sum Frequency Generation
Spectroscopy, Polarization Second Harmonic Generation, and Molecular Dynamics
Simulation. J. Chem. Phys. 2010, 132, 144701.
(20) Pöschl, U.; Rudich, Y.; Ammann, M. Kinetic Model Framework for Aerosol and Cloud
Surface Chemistry and Gas-Particle Interactions–Part 1: General Equations, Parameters,
and Terminology. Atmos. Chem. Phys. 2007, 7, 5989–6023.
(21) Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The Evolution and Future of Earth's
Nitrogen Cycle. Science 2010, 330, 192–196.
(22) Pajares, S.; Bohannan, B. J. M. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying
Microorganisms in Tropical Forest Soils. Front. Microbiol. 2016, 7.
(23) Kulmala, M.; Petäjä, T. Soil Nitrites Influence Atmospheric Chemistry. Science 2011,
333, 1586–1587.
(24) Chen, J. G. et al. Beyond Fossil Fuel–Driven Nitrogen Transformations. Science 2018,
360, eaar6611.
(25) Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of
Hydroxyl Radicals ( ꞏ OH). Chem. Rev. 2015, 115, 13051–13092.
(26) Cleemput, O.; Samater, A. H. Nitrite in Soils: Accumulation and Role in the Formation
of Gaseous N Compounds. Fertilizer Research 1995, 45, 81–89.
(27) Vione, D.; Minella, M.; Minero, C.; Maurino, V.; Picco, P.; Marchetto, A.; Tartari, G.
Photodegradation of Nitrite in Lake Waters: Role of Dissolved Organic Matter. Environ.
Chem. 2009, 6, 407.
(28) Kang, C.-L.; Gao, H.-J.; Guo, P.; Zhang, G.-S.; Tang, X.-J.; Peng, F.; Liu, X.-J. Kinetics
and Mechanism of para-Chlorophenol Photoconversion with the Presence of Nitrite in
Ice. J. Hazard. Mater. 2009, 170, 163–168.
(29) Jacobi, H.-W.; Kleffmann, J.; Villena, G.; Wiesen, P.; King, M.; France, J.; Anastasio,
C.; Staebler, R. Role of Nitrite in the Photochemical Formation of Radicals in the Snow.
Environ. Sci. Technol. 2014, 48, 165–172.
(30) Su, H.; Cheng, Y.; Oswald, R.; Behrendt, T.; Trebs, I.; Meixner, F. X.; Andreae, M. O.;
Cheng, P.; Zhang, Y.; Pöschl, U. Soil Nitrite as a Source of Atmospheric HONO and OH
Radicals. Science 2011, 333, 1616–1618.
(31) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate
Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals
( ꞏ OH/ ꞏ O–) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886.
(32) Fischer, M.; Warneck, P. Photodecomposition of Nitrite and Undissociated Nitrous Acid
in Aqueous Solution. J. Phys. Chem. 1996, 100, 18749–18756.
(33) Neta, P.; Huie, R. E.; Ross, A. B. Rate Constants for Reactions of Inorganic Radicals in
Aqueous Solution. J. Phys. Chemi. Ref. Data 1988, 17, 1027–1284.
(34) Herrmann, H. Kinetics of Aqueous Phase Reactions Relevant for Atmospheric Chemistry.
Chem. Rev. 2003, 103, 4691–4716.
(35) Herrmann, H.; Hoffmann, D.; Schaefer, T.; Bräuer, P.; Tilgner, A. Tropospheric Aqueous‐
Phase Free‐Radical Chemistry: Radical Sources, Spectra, Reaction Kinetics and Prediction
Tools. ChemPhysChem 2010, 11, 3796–3822.
(36) Zhang, F.; Yu, X.; Sui, X.; Chen, J.; Zhu, Z.; Yu, X.-Y. Evolution of aqSOA from the
Air–Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals. Environ. Sci.
Technol. 2019, 53, 10236–10245.
(37) Schaefer, T.; van Pinxteren, D.; Herrmann, H. Multiphase Chemistry of Glyoxal: Revised
Kinetics of the Alkyl Radical Reaction with Molecular Oxygen and the Reaction of Glyoxal
with OH, NO3 , and SO –
4 in Aqueous Solution. Environ. Sci. Technol. 2015, 49, 343–
350.
(38) Zhang, R.; Gen, M.; Fu, T.-M.; Chan, C. K. Production of Formate via Oxidation of Glyoxal
Promoted by Particulate Nitrate Photolysis. Environ. Sci. Technol. 2021, 55, 5711–
5720.
(39) Stein, L. Y.; Klotz, M. G. The Nitrogen Cycle. Curr. Biol. 2016, 26, R94–R98.
(40) Doane, T. A. The Abiotic Nitrogen Cycle. ACS Earth Space Chem. 2017, 1, 411–421.
(41) Kieber, R. J.; Rhines, M. F.; Willey, J. D.; Avery, G. B. Nitrite Variability in Coastal North
Carolina Rainwater and Its Impact on the Nitrogen Cycle in Rain. Environ. Sci. Technol.
1999, 33, 373–377.
(42) Rubio, M. A.; Lissi, E.; Villena, G. Nitrite in Rain and Dew in Santiago City, Chile. Its
Possible Impact on the Early Morning Start of the Photochemical Smog. Atmos. Environ.
2002, 36, 293–297.
(43) Strickler, S. J.; Kasha, M. Solvent Effects on the Electronic Absorption Spectrum of Nitrite
Ion. J. Am. Chem. Soc. 1963, 85, 2899–2901.
(44) Chu, L.; Anastasio, C. Temperature and Wavelength Dependence of Nitrite Photolysis in
Frozen and Aqueous Solutions. Environ. Sci. Technol. 2007, 41, 3626–3632.
(45) Zellner, R.; Exner, M.; Herrmann, H. Absolute OH Quantum Yields in the Laser Photolysis
of Nitrate, Nitrite and Dissolved H2O2 at 308 and 351 nm in the Temperature Range
278–353 K. J Atmos Chem 1990, 10, 411–425.
(46) Treinin, A.; Hayon, E. Absorption Spectra and Reaction Kinetics of NO2, N2O3, and N2O4
in Aqueous Solution. J. Am. Chem. Soc. 1970, 92, 5821–5828.
(47) Bilski, P.; Chignell, C. F.; Szychlinski, J.; Borkowski, A.; Oleksy, E.; Reszka, K. Photooxidation
of Organic and Inorganic Substrates During UV Photolysis of Nitrite Anion
in Aqueous Solution. J. Am. Chem. Soc. 1992, 114, 549–556.
(48) Zafiriou, O. C.; Bonneau, R. Wavelength-Dependent Quantum Yield of OH Radical Formation
from Photolysis of Nitrite Ion in Water. Photochem. Photobiol. 1987, 45, 723–
727.
(49) Seddon, W. A.; Fletcher, J. W.; Sopchyshyn, F. C. Pulse Radiolysis of Nitric Oxide in
Aqueous Solution. Can. J. Chem. 1973, 51, 1123–1130.
(50) Gonzalez, M. C.; Braun, A. M. VUV Photolysis of Aqueous Solutions of Nitrate and
Nitrite. Res. Chem. Intermed. 1995, 21, 837–859.
(51) Xu, P.; Agarwal, S.; Lefferts, L. Mechanism of Nitrite Hydrogenation Over Pd/γ-Al2O3
According a Rigorous Kinetic Study. J. Catal. 2020, 383, 124–134.
(52) Huo, X.; Van Hoomissen, D. J.; Liu, J.; Vyas, S.; Strathmann, T. J. Hydrogenation of
Aqueous Nitrate and Nitrite with Ruthenium Catalysts. Appl. Catal. B: Environ. 2017,
211, 188–198.
(53) Wei, L.; Liu, D.-J.; Rosales, B. A.; Evans, J. W.; Vela, J. Mild and Selective Hydrogenation
of Nitrate to Ammonia in the Absence of Noble Metals. ACS Catal. 2020, 10, 3618–
3628.
(54) George, I. J.; Abbatt, J. P. D. Heterogeneous Oxidation of Atmospheric Aerosol Particles
by Gas-Phase Radicals. Nature Chem. 2010, 2, 713–722.
(55) Moonen, P. C.; Cape, J. N.; Storeton-West, R. L.; McCOLM, R. Measurement of the
NO + O3 Reaction Rate at Atmospheric Pressure Using Realistic Mixing Ratios. J. Atmos.
Chem. 1998, 29, 299–314.
(56) Tadic, I.; Nussbaumer, C. M.; Bohn, B.; Harder, H.; Marno, D.; Martinez, M.; Obersteiner,
F.; Parchatka, U.; Pozzer, A.; Rohloff, R.; Zöger, M.; Lelieveld, J.; Fischer, H.
Central Role of Nitric Oxide in Ozone Production in the Upper Tropical Troposphere
Over the Atlantic Ocean and Western Africa. Atmospheric Chem. Phys. 2021, 21, 8195–
8211.
(57) Padmaja, S.; Huie, R. The Reaction of Nitric Oxide with Organic Peroxyl Radicals.
Biochem. Biophys. Res. Commun. 1993, 195, 539–544.
(58) Shih, M.-C.; Hsu, Y.-J.; Chu, L.-K. Infrared Spectroscopic and Kinetic Characterization
on the Photolysis of Nitrite in Alcohol-Containing Aqueous Solutions. J. Phys. Chem. A
2020, 124, 3904–3914.
(59) Franco, B. et al. Ubiquitous Atmospheric Production of Organic Acids Mediated by Cloud
Droplets. Nature 2021, 593, 233–237.
(60) Sanhueza, E.; Ferrer, Z.; Romero, J.; Santana, M. HCHO and HCOOH in Tropical Rains.
Ambio 1991, 20, 115–118.
(61) Ho, S. S. H.; Ho, K. F.; Lee, S. C.; Cheng, Y.; Yu, J. Z.; Lam, K. M.; Feng, N. S. Y.;
Huang, Y. Carbonyl Emissions from Vehicular Exhausts Sources in Hong Kong. J. Air
Waste Manag. Assoc. 2012, 62, 221–234.
(62) Lee, M.; Heikes, B. G.; Jacob, D. J.; Sachse, G.; Anderson, B. Hydrogen Peroxide, Organic
Hydroperoxide, and Formaldehyde as Primary Pollutants from Biomass Burning.
J. Geophys. Res. 1997, 102, 1301–1309.
(63) Buzcu Guven, B.; Olaguer, E. P. Ambient Formaldehyde Source Attribution in Houston
During TexAQS II and TRAMP. Atmos. Environ. 2011, 45, 4272–4280.
(64) Possanzini, M.; Palo, V. D.; Cecinato, A. Sources and Photodecomposition of Formaldehyde
and Acetaldehyde in Rome Ambient Air. Atmos. Environ. 2002, 36, 3195–3201.
(65) Wolfe, G. M. et al. Formaldehyde Production from Isoprene Oxidation Across NOx Regimes.
Atmos. Chem. Phys. 2016, 16, 2597–2610.
(66) Su, W.; Liu, C.; Hu, Q.; Zhao, S.; Sun, Y.; Wang, W.; Zhu, Y.; Liu, J.; Kim, J. Primary
and Secondary Sources of Ambient Formaldehyde in the Yangtze River Delta Based on
Ozone Mapping and Profiler Suite (OMPS) Observations. Atmos. Chem. Phys. 2019, 19,
6717–6736.
(67) Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J. Evidence from
the Pacific Troposphere for Large Global Sources of Oxygenated Organic Compounds.
Nature 2001, 410, 1078–1081.
(68) Allou, L.; Maimouni, L. E.; Calvé, S. L. Henry’s Law Constant Measurements for Formaldehyde
and Benzaldehyde as a Function of Temperature and Water Composition. Atmos.
Environ. 2011, 45, 2991–2998.
(69) Winkelman, J.; Voorwinde, O.; Ottens, M.; Beenackers, A.; Janssen, L. Kinetics and
Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci. 2002, 57,
4067–4076.
(70) Gruen, L. C.; McTigue, P. T. Hydration Equilibria of Aliphatic Aldehydes in H2O and
D2O. J. Chem. Soc. 1963, 5217.
(71) Bryant, W. M. D.; Thompson, J. B. Chemical Thermodynamics of Polymerization of
Formaldehyde in an Aqueous Environment. J. Polym. Sci. A-1 Polym. Chem. 1971, 9,
2523–2540.
(72) Le Botlan, D. J.; Mechin, B. G.; Martin, G. J. Proton and Carbon-13 Nuclear Magnetic
Resonance Spectrometry of Formaldehyde in Water. Anal. Chem. 1983, 55, 587–591.
(73) Rivlin, M.; Eliav, U.; Navon, G. NMR Studies of the Equilibria and Reaction Rates in
Aqueous Solutions of Formaldehyde. J. Phys. Chem. B 2015, 119, 4479–4487.
(74) Hahnenstein, I.; Albert, M.; Hasse, H.; Kreiter, C. G.; Maurer, G. NMR Spectroscopic and
Densimetric Study of Reaction Kinetics of Formaldehyde Polymer Formation in Water,
Deuterium Oxide, and Methanol. Ind. Eng. Chem. Res. 1995, 34, 440–450.
(75) Gaca, K. Z.; Parkinson, J. A.; Lue, L.; Sefcik, J. Equilibrium Speciation in Moderately
Concentrated Formaldehyde–Methanol–Water Solutions Investigated Using 13C and 1H
Nuclear Magnetic Resonance Spectroscopy. Ind. Eng. Chem. Res. 2014, 53, 9262–9271.
(76) Maiwald, M.; Fischer, H. H.; Ott, M.; Peschla, R.; Kuhnert, C.; Kreiter, C. G.; Maurer,
G.; Hasse, H. Quantitative NMR Spectroscopy of Complex Liquid Mixtures: Methods
and Results for Chemical Equilibria in Formaldehyde−Water−Methanol at Temperatures
up to 383 K. Ind. Eng. Chem. Res. 2003, 42, 259–266.
(77) Chen, Y.-F.; Chu, L.-K. Rapid Preparation of Gaseous Methanediol (CH 2 (OH) 2 ). Chem.
Commun. 2022, 58, 4208–4210.
(78) Hart, E. J.; Thomas, J. K.; Gordon, S. A Review of the Radiation Chemistry of Single-
Carbon Compounds and Some Reactions of the Hydrated Electron in Aqueous Solution.
Radiat. Res. Suppl. 1964, 4, 74.
(79) McElroy, W. J.; Waygood, S. J. Oxidation of Formaldehyde by the Hydroxyl Radical in
Aqueous Solution. Faraday Trans. 1991, 87, 1513.
(80) De Gouw, J.; Farmer, D. Cloud Droplets Aid the Production of Formic Acid in the Atmosphere.
Nature 2021, 593, 198–199.
(81) Hastings, W. P.; Koehler, C. A.; Bailey, E. L.; De Haan, D. O. Secondary Organic Aerosol
Formation by Glyoxal Hydration and Oligomer Formation: Humidity Effects and Equilibrium
Shifts During Analysis. Environ. Sci. Technol. 2005, 39, 8728–8735.
(82) Loeffler, K. W.; Koehler, C. A.; Paul, N. M.; De Haan, D. O. Oligomer Formation in Evaporating
Aqueous Glyoxal and Methyl Glyoxal Solutions. Environ. Sci. Technol. 2006, 40,
6318–6323.
(83) Galbally, I. E.; Kirstine, W. The Production of Methanol by Flowering Plants and the
Global Cycle of Methanol. J. Atmos. Chem. 2002, 43, 195–229.
(84) Jacob, D. J. Global Budget of Methanol: Constraints from Atmospheric Observations. J.
Geophys. Res. 2005, 110, D08303.
(85) Mellouki, A.; Wallington, T. J.; Chen, J. Atmospheric Chemistry of Oxygenated Volatile
Organic Compounds: Impacts on Air Quality and Climate. Chem. Rev. 2015, 115, 3984–
4014.
(86) Felix, J. D.; Roebuck, J. A.; Mead, R. N.; Willey, J. D.; Avery, G. B.; Kieber, R. J.
Methanol and Ethanol Concentrations in a Greenland Ice Core. Atmos. Environ. 2019,
217, 116948.
(87) Wu, J.; Gao, L. G.; Varga, Z.; Xu, X.; Ren, W.; Truhlar, D. G. Water Catalysis of the
Reaction of Methanol with OH Radical in the Atmosphere is Negligible. Angew. Chem.
Int. Ed. 2020, 59, 10826–10830.
(88) Teja, A. S.; Gupta, A. K.; Bullock, K.; Chai, X.-S.; Zhu, J. Henry's Constants of Methanol
in Aqueous Systems Containing Salts. Fluid Phase Equilibria 2001, 185, 265–274.
(89) Monod, A.; Chebbi, A.; Durand-Jolibois, R.; Carlier, P. Oxidation of Methanol by Hydroxyl
Radicals in Aqueous Solution under Simulated Cloud Droplet Conditions. Atmos.
Environ. 2000, 34, 5283–5294.
(90) Millet, D. B. et al. A Large and Ubiquitous Source of Atmospheric Formic Acid. Atmos.
Chem. Phys. 2015, 15, 6283–6304.
(91) Tripathi, D.; Ramaprakash, A. N.; Khan, A.; Ghosh, A.; Chatterjee, S.; Banerjee, D.;
Chordia, P.; Gandorfer, A.; Krivova, N.; Nandy, D.; Rajarshi, C.; Solanki, S. K. The
Solar Ultraviolet Imaging Telescope on-Board Aditya-L1. Curr. Sci. 2017, 113, 616–619.
第二章
(1) Faust, C. B. Modern Chemical Techniques: An Essential Reference for Students and
Teachers. Royal Society of Chemistry, 1997, pp 92–115.
(2) Harvey, D. Modern analytical chemistry; McGraw-Hill, 2000, p 382.
(3) Bernath, P. F. Encyclopedia of Analytical Science: Fourier Transform Techniques, 2nd
ed. Elsevier, 2005, pp 498–505.
(4) Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing. Wiley, 2005.
(5) Kauppinen, J.; Partanen, J. Fourier Transforms in Spectroscopy, 1st ed. Wiley, 2001.
(6) Griffiths, P. R.; De Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd ed. Wiley,
2007.
(7) Fellgett, P. B. les principes généraux des méthodes nouvelles en spectroscopie interférentielle
- A propos de la théorie du spectromètre interférentiel multiplex. J. Phys. Radium
1958, 19, 187–191.
(8) Jacquinot, P. The Luminosity of Spectrometers with Prisms, Gratings, or Fabry-Perot
Etalons. J. Opt. Soc. Am. 1954, 44, 761.
(9) Jacquinot, P. New Developments in Interference Spectroscopy. Rep. Prog. Phys. 1960,
23, 267–312.
(10) Connes, J.; Connes, P. Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments
and Results. J. Opt. Soc. Am. 1966, 56, 896.
(11) Chu, L.-K.; Lee, Y.-P. Instruments Today 2009, 31, 27–35.
(12) Mertz, L. Auxiliary Computation for Fourier Spectrometry. Infrared Physics 1967, 7, 17–
23.
(13) Mertz, L. Transformations in Optics. Wiley, 1965.
(14) Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Time-Resolved FT-IR Absorption Spectroscopy
Using a Step-Scan Interferometer. Appl Spectrosc 1991, 45, 390–397.
(15) Jiang, E. Y. Advanced FT-IR Spectroscopy; Thermo Electron Corporation, 2003.
(16) Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-bit delta-sigma A/D converters;
Kluwer Academic Publishers, 2002.
(17) Le Botlan, D. J.; Mechin, B. G.; Martin, G. J. Proton and Carbon-13 Nuclear Magnetic
Resonance Spectrometry of Formaldehyde in Water. Anal. Chem. 1983, 55, 587–591.
(18) Gruen, L. C.; McTigue, P. T. Hydration Equilibria of Aliphatic Aldehydes in H2O and
D2O. J. Chem. Soc. 1963, 5217.
(19) Bryant, W. M. D.; Thompson, J. B. Chemical Thermodynamics of Polymerization of
Formaldehyde in an Aqueous Environment. J. Polym. Sci. A-1 Polym. Chem. 1971, 9,
2523–2540.
(20) Winkelman, J.; Voorwinde, O.; Ottens, M.; Beenackers, A.; Janssen, L. Kinetics and
Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci. 2002, 57,
4067–4076.
(21) USB4000 Fiber Optic Spectrometer: Installation and Operation Manual. Ocean Optics,
Inc., 2008.
第三章
(1) Frisch, M. J. et al. Gaussian˜16 Revision C.01, Gaussian Inc. Wallingford CT, 2016.
(2) Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J.
Chem. Phys. 1993, 98, 5648–5652.
(3) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy
Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.
(4) Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The
Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.
(5) Woon, D. E.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations.
III. The Atoms Aluminum Through Argon. J. Chem. Phys. 1993, 98, 1358–
1371.
(6) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties
of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem.
2003, 24, 669–681.
第四章
(1) Strickler, S. J.; Kasha, M. Solvent Effects on the Electronic Absorption Spectrum of Nitrite
Ion. J. Am. Chem. Soc. 1963, 85, 2899–2901.
(2) Griffiths, P. R.; De Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd ed. Wiley,
2007.
(3) Pradier, C.-M.; Chabal, Y. J. Biointerface Characterization by Advanced IR Spectroscopy.
Elsevier Science, 2014.
(4) Shih, M.-C.; Hsu, Y.-J.; Chu, L.-K. Infrared Spectroscopic and Kinetic Characterization
on the Photolysis of Nitrite in Alcohol-Containing Aqueous Solutions. J. Phys. Chem. A
2020, 124, 3904–3914.
(5) Bilski, P.; Chignell, C. F.; Szychlinski, J.; Borkowski, A.; Oleksy, E.; Reszka, K. Photooxidation
of Organic and Inorganic Substrates During UV Photolysis of Nitrite Anion
in Aqueous Solution. J. Am. Chem. Soc. 1992, 114, 549–556.
(6) Chu, L.; Anastasio, C. Temperature and Wavelength Dependence of Nitrite Photolysis in
Frozen and Aqueous Solutions. Environ. Sci. Technol. 2007, 41, 3626–3632.
(7) Treinin, A.; Hayon, E. Absorption Spectra and Reaction Kinetics of NO2, N2O3, and N2O4
in Aqueous Solution. J. Am. Chem. Soc. 1970, 92, 5821–5828.
(8) Gonzalez, M. C.; Braun, A. M. VUV Photolysis of Aqueous Solutions of Nitrate and
Nitrite. Res. Chem. Intermed. 1995, 21, 837–859.
(9) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate
Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals
( ꞏ OH/ ꞏ O–) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886.
(10) Loegager, T.; Sehested, K. Formation and Decay of Peroxynitric Acid: A Pulse Radiolysis
Study. J. Phys. Chem. 1993, 97, 10047–10052.
(11) Barker, G. C.; Fowles, P.; Stringer, B. Pulse Radiolytic Induced Transient Electrical Conductance
in Liquid Solutions. Part 2.—Radiolysis of Aqueous Solutions of NO –
3 , NO –
2 and
Fe(CN) 3–
6 . Trans. Faraday Soc. 1970, 66, 1509–1519.
(12) Fischer, M.; Warneck, P. Photodecomposition of Nitrite and Undissociated Nitrous Acid
in Aqueous Solution. J. Phys. Chem. 1996, 100, 18749–18756.
(13) Zellner, R.; Exner, M.; Herrmann, H. Absolute OH Quantum Yields in the Laser Photolysis
of Nitrate, Nitrite and Dissolved H2O2 at 308 and 351 nm in the Temperature range
278–353 K. J. Atmos. Chem. 1990, 10, 411–425.
(14) Zafiriou, O. C.; Bonneau, R. Wavelength-Dependent Quantum Yield of OH Radical Formation
from Photolysis of Nitrite Ion in Water. Photochem. Photobiol. 1987, 45, 723–
727.
(15) Monod, A.; Chebbi, A.; Durand-Jolibois, R.; Carlier, P. Oxidation of Methanol by Hydroxyl
Radicals in Aqueous Solution under Simulated Cloud Droplet Conditions. Atmos.
Environ. 2000, 34, 5283–5294.
(16) Hart, E. J.; Thomas, J. K.; Gordon, S. A Review of the Radiation Chemistry of Single-
Carbon Compounds and Some Reactions of the Hydrated Electron in Aqueous Solution.
Radiat. Res. Suppl. 1964, 4, 74.
(17) McElroy, W. J.; Waygood, S. J. Oxidation of Formaldehyde by the Hydroxyl Radical in
Aqueous Solution. Faraday Trans. 1991, 87, 1513.
(18) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.;
Jenkin, M. E.; Rossi, M. J.; Troe, J.; IUPAC Subcommittee Evaluated Kinetic and Photo-chemical Data for Atmospheric Chemistry: Volume II–Gas Phase Reactions of Organic
Species. Atmos. Chem. Phys. 2006, 6, 3625–4055.
(19) Koskikallio, J.; Sillén, L. G.; Smith-Kielland, I.; Sömme, R.; Stenhagen, E.; Palmstierna,
H. Kinetics of Solvolysis of Acetic Anhydride in Methanol-Water Mixtures. Acta Chem.
Scand. 1959, 13, 665–670.
附錄
(1) Schoppelrei, J. W.; Brill, T. B. Spectroscopy of Hydrothermal Reactions. 7. Kinetics of
Aqueous [NH3OH]NO3 at 463–523 K and 27.5 MPa by Infrared Spectroscopy. J. Phys.
Chem. A 1997, 101, 8593–8596.
(2) Weston, R. E.; Brodasky, T. F. Infrared Spectrum and Force Constants of the Nitrite Ion.
J. Chem. Phys. 1957, 27, 683–689.
(3) Hudson, P. K.; Schwarz, J.; Baltrusaitis, J.; Gibson, E. R.; Grassian, V. H. A Spectroscopic
Study of Atmospherically Relevant Concentrated Aqueous Nitrate Solutions. J.
Phys. Chem. A 2007, 111, 544–548.
(4) Milligan, D. E.; Jacox, M. E. Infrared Spectroscopic Evidence for the Species HO2. J.
Chem. Phys. 1963, 38, 2627–2631.
(5) Brown, H. W.; Pimentel, G. C. Photolysis of Nitromethane and of Methyl Nitrite in an
Argon Matrix; Infrared Detection of Nitroxyl, HNO. J. Chem. Phys. 1958, 29, 883–888.
(6) Maréchal, Y. Infrared Spectra of Water. I. Effect of Temperature and of H / D Isotopic
Dilution. J. Chem. Phys. 1991, 95, 5565–5573.
(7) Falk, M.; Miller, A. G. Infrared Spectrum of Carbon Dioxide in Aqueous Solution. Vib.
Spectrosc. 1992, 4, 105–108.
(8) Hartman, K. O.; Hisatsune, I. C. Infrared Spectrum of Carbon Dioxide Anion Radical. J.
Chem. Phys. 1966, 44, 1913–1918.
(9) Ito, K.; Bernstein, H. J. The Vibrational Spectra of the Formate, Acetate, and Oxalate
Ions. Can. J. Chem. 1956, 34, 170–178.
(10) Rudolph, W. W.; Fischer, D.; Irmer, G. Vibrational Spectroscopic Studies and Density
Functional Theory Calculations of Speciation in the CO2—Water System. Appl. Spectrosc.
2006, 60, 130–144.
(11) Millikan, R. C.; Pitzer, K. S. Infrared Spectra and Vibrational Assignment of Monomeric
Formic Acid. J. Chem. Phys. 1957, 27, 1305–1308.
(12) Falk, M.; Whalley, E. Infrared Spectra of Methanol and Deuterated Methanols in Gas,
Liquid, and Solid Phases. J. Chem. Phys. 1961, 34, 1554–1568.
(13) Zhou, M.; Zhang, L.; Qin, Q. The CO2 NO van der Waals Complex and the Covalently
Bonded CO2 NO– Anion: A Matrix-Isolation FTIR and Theoretical Study. J. Am. Chem.
Soc. 2000, 122, 4483–4488.
(此全文20250821後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以紫外可見吸收光譜法搭配數值方法探討甲二醇與亞硝酸鹽混合水溶液之光解反應機構及反應動力學
2. 以時間解析紅外吸收光譜法研究丙酮水溶液之光解反應
3. 以瞬態吸收光譜法研究硫酸根自由基之反應動力學及其與甲醇反應之動力學同位素效應
4. 界面活性劑對紫膜及細菌視紫質結構的影響
5. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
6. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
7. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
8. 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
9. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
10. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
11. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
12. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
13. 以步進式掃描傅氏轉換光譜儀 研究光激發金奈米粒子之瞬態紅外放光
14. 利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程
15. 以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程
 
* *