|
1. Ruggiero, M. T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter, T. M. Measuring the Elasticity of Poly-L-Proline Helices with Terahertz Spectroscopy. Angew. Chem. Int. Ed. 2016, 55 (24), 6877-81. 2. Traub, W.; Shmueli, U. Structure of Poly-L-Proline I. Nature 1963, 198, 1165-1166. 3. Kakinoki, S.; Hirano, Y.; Oka, M. On the Stability of Polyproline-I and II Structures of Proline Oligopeptides. Polym. Bull. 2004, 53 (2), 109-115. 4. Moradi, M.; Babin, V.; Roland, C.; Darden, T. A.; Sagui, C. Conformations and Free Energy Landscapes of Polyproline Peptides. Proc. Natl. Acad. Sci. USA. 2009, 106 (49), 20746-20751. 5. Bochicchio, B.; Tamburro, A. M. Polyproline II Structure in Proteins: Identification by Chiroptical Spectroscopies, Stability, and Functions. Chirality 2002, 14 (10), 782-92. 6. Shi, Z.; Chen, K.; Liu, Z.; Kallenbach, N. R. Conformation of the Backbone in Unfolded Proteins. Chem. Rev. 2006, 106 (5), 1877-1897. 7. Hinderaker, M. P.; Raines, R. T. An Electronic Effect on Protein Structure. Protein Sci. 2003, 12 (6), 1188-94. 8. Newberry, R. W.; Raines, R. T. The n→π* Interaction. Acc. Chem. Res. 2017, 50 (8), 1838-1846. 9. Lesarri, A.; Mata, S.; Cocinero, E. J.; Blanco, S.; Lopez, J. C.; Alonso, J. L. The Structure of Neutral Proline. Angew. Chem. Int. Ed. 2002, 41 (19), 4673-4676. 10. Holmgren, S. K.; Taylor, K. M.; Bretscher, L. E.; Raines, R. T. Code for Collagen's Stability Deciphered. Nature 1998, 392 (6677), 666-667. 11. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. Conformational Stability of Collagen Relies on a Stereoelectronic Effect. J. Am. Chem. Soc. 2001, 123 (4), 777-778. 12. Taylor, C. M.; Hardré, R.; Edwards, P. J. B. The Impact of Pyrrolidine Hydroxylation on the Conformation of Proline-Containing Peptides. J. Org. Chem. 2005, 70 (4), 1306-1315. 13. Cheng, P. N.; Liu, C.; Zhao, M.; Eisenberg, D.; Nowick, J. S. Amyloid Beta-Sheet Mimics That Antagonize Protein Aggregation and Reduce Amyloid Toxicity. Nat. Chem. 2012, 4 (11), 927-33. 14. Díaz-Caballero, M.; Navarro, S.; Nuez-Martínez, M.; Peccati, F.; Rodríguez-Santiago, L.; Sodupe, M.; Teixidor, F.; Ventura, S. pH-Responsive Self-Assembly of Amyloid Fibrils for Dual Hydrolase-Oxidase Reactions. ACS Catal. 2020, 11 (2), 595-607. 15. Diaz-Caballero, M.; Navarro, S.; Ventura, S. Functionalized Prion-Inspired Amyloids for Biosensor Applications. Biomacromolecules 2021, 22 (7), 2822-2833. 16. Smith, P.; Nair, P. A.; Das, U.; Zhu, H.; Shuman, S. Structures and Activities of Archaeal Members of the LigD 3'-Phosphoesterase DNA Repair Enzyme Superfamily. Nucleic Acids Res. 2011, 39 (8), 3310-20. 17. Roberts, I.; Urey, H. C. The Mechanisms of Acid Catalyzed Ester Hydrolysis, Esterification and Oxygen Exchange of Carboxylic Acids. J. Am. Chem. Soc. 1939, 61 (10), 2584-2587. 18. Jencks, W. P.; Carriuolo, J. General Base Catalysis of Ester Hydrolysis1. J. Am. Chem. Soc. 1961, 83 (7), 1743-1750. 19. Bruice, T. C.; Schmir, G. L. Imidazole Catalysis. I. The Catalysis of the Hydrolysis of Phenyl Acetates by Imidazole. J. Am. Chem. Soc. 1957, 79 (7), 1663-1667. 20. Kirsch, J. F.; Jencks, W. P. Base Catalysis of Imidazole Catalysis of Ester Hydrolysis. J. Am. Chem. Soc. 1964, 86 (5), 833-837. 21. Polgar, L. The Catalytic Triad of Serine Peptidases. Cell. Mol. Life Sci. 2005, 62 (19-20), 2161-72. 22. Gutfreund, H.; Sturtevant, J. M. The Mechanism of the Reaction of Chymotrypsin with P-Nitrophenyl Acetate. Biochem. J. 1956, 63 (4), 656-661. 23. Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T. L.; Sussman, J. L. Acetylcholinesterase: From 3D Structure to Function. Chem. Biol. Interact. 2010, 187 (1-3), 10-22. 24. Clark, J. D.; Schievella, A. R.; Nalefski, E. A.; Lin, L.-L. Cytosolic Phospholipase A2. J. Lipid Mediators Cell Signal. 1995, 12 (2), 83-117. 25. Proteases and Protease Inhibitors in Tumor Progression. In Chemistry and Biology of Serpins. Frank C. C.; Dennis D. C.; David G.; Maureane H.; Stuart R. S.; and Douglas M. T., Eds.; Springer, 1997; pp 89-98. 26. Gorrell, Mark D. Dipeptidyl Peptidase Iv and Related Enzymes in Cell Biology and Liver Disorders. Clin. Sci. 2005, 108 (4), 277-292. 27. Wilson, C.; Cooper, N. J.; Briggs, M. E.; Cooper, A. I.; Adams, D. J. Investigating the Breakdown of the Nerve Agent Simulant Methyl Paraoxon and Chemical Warfare Agents Gb and Vx Using Nitrogen Containing Bases. Org. Biomol. Chem. 2018, 16 (47), 9285-9291. 28. Casida, J. E.; Quistad, G. B. Organophosphate Toxicology: Safety Aspects of Nonacetylcholinesterase Secondary Targets. Chem. Res. Toxicol. 2004, 17 (8), 983-998. 29. Liu, Y.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Dual-Function Metal–Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS Nano 2015, 9 (12), 12358-12364. 30. Bajda, M.; Wieckowska, A.; Hebda, M.; Guzior, N.; Sotriffer, C. A.; Malawska, B. Structure-Based Search for New Inhibitors of Cholinesterases. Int. J. Mol. Sci. 2013, 14 (3), 5608-32. 31. Santarpia, L.; Grandone, I.; Contaldo, F.; Pasanisi, F. Butyrylcholinesterase as a Prognostic Marker: a Review of the Literature. J. Cachexia Sarcopenia Muscle 2013, 4 (1), 31-9. 32. Khersonsky, O.; Tawfik, D. S. The Histidine 115-Histidine 134 Dyad Mediates the Lactonase Activity of Mammalian Serum Paraoxonases. J. Biol. Chem. 2006, 281 (11), 7649-56. 33. Mody, V.; Ho, J.; Wills, S.; Mawri, A.; Lawson, L.; Ebert, M.; Fortin, G. M.; Rayalam, S.; Taval, S. Identification of 3-Chymotrypsin Like Protease (3CLPro) Inhibitors as Potential Anti-SARS-CoV-2 Agents. Commun. Biol. 2021, 4 (1), 93. 34. Ferreira, J. C.; Fadl, S.; Villanueva, A. J.; Rabeh, W. M. Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Front. Chem. 2021, 9, 692168. 35. Dodson, G.; Wlodawer, A. Catalytic Triads and Their Relatives. Trends Biochem. Sci. 1998, 23 (9), 347-352. 36. Corey, D. R.; Craik, C. S. An Investigation into the Minimum Requirements for Peptide Hydrolysis by Mutation of the Catalytic Triad of Trypsin. J. Am. Chem. Soc. 1992, 114 (5), 1784-1790. 37. Simon, L.; Goodman, J. M. Enzyme Catalysis by Hydrogen Bonds: The Balance between Transition State Binding and Substrate Binding in Oxyanion Holes. J. Org. Chem. 2010, 75 (6), 1831-40. 38. Naray-Szabo, G.; Olah, J.; Kramos, B. Quantum Mechanical Modeling: a Tool for the Understanding of Enzyme Reactions. Biomolecules 2013, 3 (3), 662-702. 39. Goettig, P.; Brandstetter, H.; Magdolen, V. Surface Loops of Trypsin-Like Serine Proteases as Determinants of Function. Biochimie 2019, 166, 52-76. 40. Duncan, K. L.; Ulijn, R. V. Short Peptides in Minimalistic Biocatalyst Design. Biocatal. 2015, 1 (1), 67-81. 41. Bezer, S.; Matsumoto, M.; Lodewyk, M. W.; Lee, S. J.; Tantillo, D. J.; Gagne, M. R.; Waters, M. L. Identification and Optimization of Short Helical Peptides with Novel Reactive Functionality as Catalysts for Acyl Transfer by Reactive Tagging. Org. Biomol. Chem. 2014, 12 (9), 1488-94. 42. Matsumoto, M.; Lee, S. J.; Gagne, M. R.; Waters, M. L. Cross-Strand Histidine-Aromatic Interactions Enhance Acyl-Transfer Rates in Beta-Hairpin Peptide Catalysts. Org. Biomol. Chem. 2014, 12 (43), 8711-8. 43. Zastrow, M. L.; Peacock, A. F.; Stuckey, J. A.; Pecoraro, V. L. Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein. Nat. Chem. 2011, 4 (2), 118-23. 44. Wang, P. S.; Nguyen, J. B.; Schepartz, A. Design and High-Resolution Structure of a Beta3-Peptide Bundle Catalyst. J. Am. Chem. Soc. 2014, 136 (19), 6810-3. 45. Zhang, Q.; He, X.; Han, A.; Tu, Q.; Fang, G.; Liu, J.; Wang, S.; Li, H. Artificial Hydrolase Based on Carbon Nanotubes Conjugated with Peptides. Nanoscale 2016, 8 (38), 16851-16856. 46. Zaramella, D.; Scrimin, P.; Prins, L. J. Self-Assembly of a Catalytic Multivalent Peptide-Nanoparticle Complex. J. Am. Chem. Soc. 2012, 134 (20), 8396-9. 47. Solomon, L. A.; Kronenberg, J. B.; Fry, H. C. Control of Heme Coordination and Catalytic Activity by Conformational Changes in Peptide-Amphiphile Assemblies. J. Am. Chem. Soc. 2017, 139 (25), 8497-8507. 48. Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stohr, J.; Smith, T. A.; Hu, X.; DeGrado, W. F.; Korendovych, I. V. Short Peptides Self-Assemble to Produce Catalytic Amyloids. Nat. Chem. 2014, 6 (4), 303-9. 49. Song, R.; Wu, X.; Xue, B.; Yang, Y.; Huang, W.; Zeng, G.; Wang, J.; Li, W.; Cao, Y.; Wang, W.; Lu, J.; Dong, H. Principles Governing Catalytic Activity of Self-Assembled Short Peptides. J. Am. Chem. Soc. 2019, 141 (1), 223-231. 50. Wang, M.; Lv, Y.; Liu, X.; Qi, W.; Su, R.; He, Z. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting. ACS Appl. Mater. Interfaces 2016, 8 (22), 14133-41. 51. Hung, P. Y.; Chen, Y. H.; Huang, K. Y.; Yu, C. C.; Horng, J. C. Design of Polyproline-Based Catalysts for Ester Hydrolysis. ACS Omega 2017, 2 (9), 5574-5581. 52. Ting, Y. H.; Chen, H. J.; Cheng, W. J.; Horng, J. C. Zinc(Ii)-Histidine Induced Collagen Peptide Assemblies: Morphology Modulation and Hydrolytic Catalysis Evaluation. Biomacromolecules 2018, 19 (7), 2629-2637. 53. Huang, K. Y.; Yu, C. C.; Horng, J. C. Conjugating Catalytic Polyproline Fragments with a Self-Assembling Peptide Produces Efficient Artificial Hydrolases. Biomacromolecules 2020, 21 (3), 1195-1201. 54. Agarkov, A.; Greenfield, S. J.; Ohishi, T.; Collibee, S. E.; Gilbertson, S. R. Catalysis with Phosphine-Containing Amino Acids in Various “Turn” Motifs. J. Org. Chem. 2004, 69 (23), 8077-8085. 55. Pepe, A.; Crudele, M. A.; Bochicchio, B. Effect of Proline Analogues on the Conformation of Elastin Peptides. New J. Chem. 2013, 37 (5), 1326-1335. 56. Shoulders, M. D.; Kotch, F. W.; Choudhary, A.; Guzei, I. A.; Raines, R. T. The Aberrance of the 4S Diastereomer of 4-Hydroxyproline. J. Am. Chem. Soc. 2010, 132 (31), 10857-10865. 57. Merrifield, R. B. Solid-Phase Peptide Synthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 1969, 221-296. 58. Rupp, B. Circular Dichroism Spectroscopy. https://www.ruppweb.org/cd/cdtutorial.htm. (accessed on 2022/06/05) 59. Sreerama, N.; Woody, R. W., Computation and Analysis of Protein Circular Dichroism Spectra. In Methods Enzymol. 2004, 383, 318-351. 60. Kelly, S. M.; Jess, T. J.; Price, N. C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta 2005, 1751 (2), 119-39. 61. Wei, Y.; Thyparambil, A. A.; Latour, R. A. Protein Helical Structure Determination Using CD Spectroscopy for Solutions with Strong Background Absorbance from 190 to 230nm. Biochim. Biophys. Acta 2014, 1844 (12), 2331-7. 62. Burton, A. J.; Thomson, A. R.; Dawson, W. M.; Brady, R. L.; Woolfson, D. N. Installing Hydrolytic Activity into a Completely De Novo Protein Framework. Nat. Chem. 2016, 8 (9), 837-44. 63. Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. J. Am.Chem. Soc. 2002, 124 (50), 15030-15037. 64. Zhang, C.; Shafi, R.; Lampel, A.; MacPherson, D.; Pappas, C. G.; Narang, V.; Wang, T.; Maldarelli, C.; Ulijn, R. V. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide. Angew. Chem. Int. Ed. 2017, 56 (46), 14511-14515. 65. Isom Daniel, G.; Castañeda Carlos, A.; Cannon Brian, R.; García-Moreno, E. B. Large Shifts in pKa Values of Lysine Residues Buried Inside a Protein. Proc. Natl. Acad. Sci. USA. 2011, 108 (13), 5260-5265. 66. Soto, C.; Sigurdsson, E. M.; Morelli, L.; Asok Kumar, R.; Castaño, E. M.; Frangione, B. Β-Sheet Breaker Peptides Inhibit Fibrillogenesis in a Rat Brain Model of Amyloidosis: Implications for Alzheimer's Therapy. Nat. Med. 1998, 4 (7), 822-826. 67. Moriarty, D. F.; Raleigh, D. P. Effects of Sequential Proline Substitutions on Amyloid Formation by Human Amylin20-29. Biochemistry 1999, 38 (6), 1811-1818. 68. Kanchi, P. K.; Dasmahapatra, A. K. Polyproline Chains Destabilize the Alzheimer's Amyloid-Beta Protofibrils: A Molecular Dynamics Simulation Study. J. Mol. Graph. Model. 2019, 93, 107456. 69. Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V. ATR-FTIR: A "Rejuvenated" Tool to Investigate Amyloid Proteins. Biochim. Biophys. Acta 2013, 1828 (10), 2328-38. 70. Hamley, I. W. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021, 22 (5), 1835-1855. 71. Luong, T. Q.; Erwin, N.; Neumann, M.; Schmidt, A.; Loos, C.; Schmidt, V.; Fandrich, M.; Winter, R. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes. Angew. Chem. Int. Ed. 2016, 55 (40), 12412-6. 72. Friedmann, M. P.; Torbeev, V.; Zelenay, V.; Sobol, A.; Greenwald, J.; Riek, R. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening. PLOS One 2015, 10 (12), e0143948. 73. Moroz, Y. S.; Dunston, T. T.; Makhlynets, O. V.; Moroz, O. V.; Wu, Y.; Yoon, J. H.; Olsen, A. B.; McLaughlin, J. M.; Mack, K. L.; Gosavi, P. M.; van Nuland, N. A.; Korendovych, I. V. New Tricks for Old Proteins: Single Mutations in a Nonenzymatic Protein Give Rise to Various Enzymatic Activities. J. Am. Chem. Soc. 2015, 137 (47), 14905-11. 74. Wei, Y.; Hecht, M. H. Enzyme-Like Proteins from an Unselected Library of Designed Amino Acid Sequences. Protein Eng. Des. Sel. 2004, 17 (1), 67-75. 75. Singh, N.; Conte, M. P.; Ulijn, R. V.; Miravet, J. F.; Escuder, B. Insight into the Esterase Like Activity Demonstrated by an Imidazole Appended Self-Assembling Hydrogelator. Chem. Commun. 2015, 51 (67), 13213-6. 76. Wolfenden, R. Benchmark Reaction Rates, the Stability of Biological Molecules in Water, and the Evolution of Catalytic Power in Enzymes. Annu. Rev. Biochem. 2011, 80, 645-67. 77. Yu, Z. H.; Zhang, Z. Y. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem. Rev. 2018, 118 (3), 1069-1091. 78. Lorenz, U. Protein Tyrosine Phosphatase Assays. Curr. Proto.c Immunol. 2011, Chapter 11, Unit 11 7. 79. Der, B. S.; Edwards, D. R.; Kuhlman, B. Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering. Biochemistry 2012, 51 (18), 3933-40. 80. Wang, Y.; Yang, L.; Wang, M.; Zhang, J.; Qi, W.; Su, R.; He, Z. Bioinspired Phosphatase-Like Mimic Built from the Self-Assembly of De Novo Designed Helical Short Peptides. ACS Catal. 2021, 11 (9), 5839-5849. 81. Sarmiento, M.; Zhao, Y.; Gordon, S. J.; Zhang, Z. Y. Molecular Basis for Substrate Specificity of Protein-Tyrosine Phosphatase 1B. J. Biol. Chem. 1998, 273 (41), 26368-74. 82. O'Brien, P. J.; Herschlag, D. Alkaline Phosphatase Revisited: Hydrolysis of Alkyl Phosphates. Biochemistry 2002, 41 (9), 3207-3225. 83. Pina, A. S.; Morgado, L.; Duncan, K. L.; Carvalho, S.; Carvalho, H. F.; Barbosa, A. J. M.; de, P. M. B.; Moreira, I. P.; Kalafatovic, D.; Morais Faustino, B. M.; Narang, V.; Wang, T.; Pappas, C. G.; Ferreira, I.; Roque, A. C. A.; Ulijn, R. V. Discovery of Phosphotyrosine-Binding Oligopeptides with Supramolecular Target Selectivity. Chem. Sci. 2021, 13 (1), 210-217.
|