帳號:guest(3.147.126.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃星輔
作者(外文):Huang, Xing-Fu.
論文名稱(中文):在水相利用表面含4-硝基苯乙炔修飾的氧化亞銅粒子進行光催化聚合反應
論文名稱(外文):Aqueous Phase Photocatalyzed Dimethylacrylamide Polymerization Using 4-Nitrophenylacetylene-Modified Cu2O Crystals
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):彭之皓
陳俊太
口試委員(外文):Peng, Chi-How
Chen, Jiun-Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023548
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:63
中文關鍵詞:氧化亞銅氮,氮-二甲基丙烯酰胺高分子
外文關鍵詞:Cu2ON,N-dimethylacrylamidepolymerization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:222
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室在先前的研究中發現氧化亞銅奈米粒子表面經由4-硝基苯乙炔修飾過後,能有效促進氧化亞銅正立方體、八面體以及菱形十二面體對降解甲基橙染料的活性,並利用密度泛函理論計算得出氧化亞銅經過修飾之後能夠產生有效幫助電子轉移,以利於後續電子電洞分離,並讓電洞與水產生氫氧自由基分解甲基橙。
而在本次實驗中,將修飾過的氧化亞銅粒子應用於水相自由基聚合反應中,在共同引發劑的幫助下,修飾過的氧化亞銅粒子能夠使N,N-二甲基丙烯酰胺在六十分鐘內達到百分之九十一的轉換率。在後續的測試中,利用氧化亞銅粒子作為自由基起始劑的作法能夠使得此自由基促進的聚合反應直接在空氣環境下進行並在一小時內達到百分之六十四的轉換率。後續並利用1,4-苯醌以及草酸鈉分別作為電子和電洞捕捉劑,以確認能夠影響反應機制的電子載體種類。
Previously, Cu2O cubes, octahedra, and rhombic dodecahedra have been shown to exhibit greatly enhanced methyl orange photodegradation activities through surface functionalization with 4-nitrophenylacetylene (4-NA). Density functional theory (DFT) calculations reveal emergence of a narrow bands within the band gap of Cu2O to facilitate electron transfer through 4-NA and this likely gives better charge separation. In this work, 4-NA-modified Cu2O particles were applied as photocatalysts for free-radical polymerization reactions in aqueous phase via photoactivating coinitiator. The excellent photocatalytic performance of modified Cu2O catalyst was confirmed by a high N,N-dimethylacrylamide monomer conversion of 91% in thirty minutes. The polymerization reaction was also carried out in ambient air condition, and the conversion reached 64% in one hour. Doing so can simplify the reaction process substantially. Furthermore, 1,4-benzoquinone and sodium oxalate were used as electron and hole scavengers to reveal the major charge carrier to support the proposed reaction mechanism.
論文摘要 i
ABSTRACT ii
LIST OF FIGURES vi
LIST OF SCHEMES xi
LIST OF TABLES xii
1. Introduction 1
1.1 Cuprous oxide 1
1.2 Facet-dependent photocatalytic properties of Cu2O crystals 3
1.2 Photocatalytic activity of decorated and functionalized Cu2O crystals 6
1.3 Polymerization reactions using semiconductor catalysts 11
2. Motivation 19
3. Experimental Section 20
3.1 Chemicals 20
3.2 Synthesis of Cu2O nanoparticles 20
3.3 4-Nitrophenylacetylene-modification for Cu2O crystals 23
3.4 General procedure for Cu2O photocatalyzed polymerization 23
3.5 Active Species Trapping Experiments 24
3.6 Recyclability and Scale-up for Cu2O photopolymerization 25
3.7 Polymerization Tracking and Residual Copper Ions Determination………………………………………………………………………………………………………26
3.8 Instrumentation 26
4. Results and Discussion 30
4.1 Characterization of 4-NA Functionalized Cu2O crystals 30
4.2 Results of Cu2O photocatalytic polymerization 34
4.3 Results of Active Species Trapping 40
4.4 Results of Cu2O recyclability and scale-up for polymerization 43
4.5 Polymerization Tracking and Residual Copper Ions Determination 45
5. Conclusion 48
6. References 49
APPENDIX 58
1. Huang, M. H.; Lin, P.-H. Shape‐Controlled Synthesis of Polyhedral Nanocrystals and Their Facet‐Dependent Properties. Adv. Funct. Mater. 2012, 22 (1), 14-24.
2. Huang, M. H.; Rej, S.; Hsu, S.-C. Facet-Dependent Properties of Polyhedral Nanocrystals. Chem. Commun. 2014, 50 (14), 1634-1644.
3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-2160.
4. Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic Co Oxidation Activity. J. Am. Chem. Soc. 2010, 132 (48), 17084-17087.
5. Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Crystal‐Plane‐Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals. Angew. Chem. Int. Ed. 2011, 123 (51), 12502-12506.
6. Hua, Q.; Cao, T.; Gu, X. K.; Lu, J.; Jiang, Z.; Pan, X.; Luo, L.; Li, W. X.; Huang, W. Crystal‐Plane‐Controlled Selectivity of Cu2O Catalysts in Propylene Oxidation with Molecular Oxygen. Angew. Chem. Int. Ed. 2014, 126 (19), 4956-4961.
7. Pastor, E.; Pesci, F. M.; Reynal, A.; Handoko, A. D.; Guo, M.; An, X.; Cowan, A. J.; Klug, D. R.; Durrant, J. R.; Tang, J. Interfacial Charge Separation in Cu2O /RuOX as a Visible Light Driven CO2 Reduction Catalyst. Phys. Chem. Chem. Phys. 2014, 16 (13), 5922-5926.
8. Schreier, M.; Gao, P.; Mayer, M. T.; Luo, J.; Moehl, T.; Nazeeruddin, M. K.; Tilley, S. D.; Gratzel, M. Efficient and Selective Carbon Dioxide Reduction on Low Cost Protected Cu2O Photocathodes Using a Molecular Catalyst. Energy Environ. Sci. 2015, 8 (3), 855-861.
9. Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6 (15), 8704-8709.
10. Chanda, K.; Rej, S.; Huang, M. H. Facet‐Dependent Catalytic Activity of Cu2O Nanocrystals in the One‐Pot Synthesis of 1, 2, 3‐Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19 (47), 16036-16043.
11. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5 (24), 12494-12501.
12. Liu, X.-W. Selective Growth of Au Nanoparticles on (111) Facets of Cu2O Microcrystals with an Enhanced Electrocatalytic Property. Langmuir 2011, 27 (15), 9100-9104.
13. Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au‒Cu2O Core‒Shell Heterostructures. J. Am. Chem. Soc. 2011, 133 (4), 1052-1057.
14. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134 (2), 1261-1267.
15. Liang, T.-Y.; Chan, S.-J.; Patra, A. S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M.H. Inactive Cu2O Cubes Become Highly Photocatalytically Active with Ag2S Deposition. ACS Appl. Mater. Interfaces 2021, 13 (9), 11515-11523.
16. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties. Adv. Funct. Mater. 2007, 17 (15), 2766-2771.
17. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, Self-Assembly, Disassembly, and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with {001} or {110} Planes. J. Am. Chem. Soc. 2010, 132 (17), 6131-6144.
18. Liu, Z. G.; Sun, Y. F.; Chen, W. K.; Kong, Y.; Jin, Z.; Chen, X.; Zheng, X.; Liu, J. H.; Huang, X. J.; Yu, S. H. Facet‐Dependent Stripping Behavior of Cu2O Microcrystals toward Lead Ions: A Rational Design for the Determination of Lead Ions. Small 2015, 11 (21), 2493-2498.
19. Wang, J.; Cui, F.; Chu, S.; Jin, X.; Pu, J.; Wang, Z. In Situ Growth of Noble-Metal Nanoparticles on Cu2O Nanocubes for Surface-Enhanced Raman Scattering Detection. ChemPlusChem 2014, 79 (5), 684-689.
20. You, T.; Jiang, L.; Yin, P.; Shang, Y.; Zhang, D.; Guo, L.; Yang, S. Direct Observation of P, P’‐Dimercaptoazobenzene Produced from P‐Aminothiophenol and P‐Nitrothiophenol on Cu2O Nanoparticles by Surface‐Enhanced Raman Spectroscopy. J Raman Spectrosc. 2014, 45 (1), 7-14.
21. Morales‐Guio, C. G.; Liardet, L.; Mayer, M. T.; Tilley, S. D.; Gratzel, M.; Hu, X. Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu2O Coated with Earth‐Abundant Hydrogen Evolution Catalysts. Angew. Chem. Int. Ed. 2015, 127 (2), 674-677.
22. Hung, L. I.; Tsung, C. K.; Huang, W.; Yang, P. Room‐Temperature Formation of Hollow Cu2O Nanoparticles. Adv. Mater. 2010, 22 (17), 1910-1914.
23. Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials. Adv. Mater. 2009, 21 (7), 803-807.
24. Chen, K.; Song, S.; Xue, D. Faceted Cu2O Structures with Enhanced Li-Ion Battery Anode Performances. CrystEngComm 2015, 17 (10), 2110-2117.
25. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5 (29), 15116-15123.
26. Yuan, G. Z.; Hsia, C. F.; Lin, Z. W.; Chiang, C.; Chiang, Y. W.; Huang, M. H. Highly Facet‐Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au‐Decorated Cu2O Heterostructures. Chem.‒Eur. J. 2016, 22 (35), 12548-12556.
27. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.
28. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2018, 11 (3), 3582-3589.
29. Wu, S. C.; Tan, C. S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O‒ZnO Heterostructures. Adv. Funct. Mater. 2017, 27 (9), 1604635.
30. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related
Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.
31. Shanmugam, M.; Sagadevan, A.; Charpe, V. P.; Pampana, V. K. K.; Hwang, K. C. Cu2O Nanocrystals‐Catalyzed Photoredox Sonogashira Coupling of Terminal Alkynes and Arylhalides Enhanced by CO2. ChemSusChem 2020, 13 (2), 287-292.
32. Zhang, W.; Ren, B.; Jiang, Y.; Hu, Z. Carboxymethylpullulan Promoted Cu2O-Catalyzed Huisgen-Click Reaction. RSC Adv. 2015, 5 (16), 12043-12047.
33. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 6 (6), 984-994.
34. Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Photocatalytic Activity Enhancement of Cu2O Cubes Functionalized with 2-Ethynyl-6-Methoxynaphthalene through Band Structure Modulation. J. Mater. Chem. C 2022, 10, 3980-3989.
35. Chan, S.-J., Kao, J.-C., Chou, P.-J., Lo, Y.-C., Chou, J.-P., Huang, M. H. 4-Nitrophenylacetylene-Modified Cu2O Cubes and Rhombic Dodecahedra Showing Superior Photocatalytic Activity through Surface Band Structure Modulation. J. Mater. Chem. C. 2022, 10, 8422-8431.
36. Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P. M.; Lou, J. In Situ Synthesis of Lead-free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4 (3), 464–471.
37. Riad, K. B.; Arnold, A. A.; Claverie, J. P.; Hoa, S. V.; Wood-Adams, P. M. Photopolymerization Using Metal Oxide Semiconducting Nanoparticles for Epoxy-based Coatings and Patterned Films. ACS Appl. Nano Mater. 2020, 3 (3), 2875–2880.
38. Zhang, J.; Huang, Y.; Jin, X.; Nazartchouk, A.; Liu, M.; Tong, X.; Jiang, Y.; Ni, L.; Sun, S.; Sang, Y.; Liu, H.; Razzari, L.; Vetrone, F.; Claverie, J. Plasmon Enhanced Upconverting Core@Triple-Shell Nanoparticles as Recyclable Panchromatic Initiators (Blue to Infrared) for Radical Polymerization. Nanoscale Horiz. 2019, 4 (4), 907–917.
39. Mcclelland, K. P.; Clemons, T. D.; Stupp, S. I.; Weiss, E. A. Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization. ACS Macro Lett. 2020, 9 (1), 7–13.
40. Huang, Y.; Zhu, Y.; Egap, E. Semiconductor Quantum Dots as Photocatalysts for Controlled Light-Mediated Radical Polymerization. ACS Macro Lett. 2018, 7 (2), 184–189.
41. Wang, J.-S.; Matyjaszewski, K. Controlled “living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614−5615.
42. Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101 (9), 2921−2990.
43. Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136 (18), 6513−6533.
44. Niu, J.; Page, Z. A.; Dolinski, N. D.; Anastasaki, A.; Hsueh, A. T.; Soh, H. T.; Hawker, C. J.. Rapid Visible Light-mediated Controlled Aqueous Polymerization with in Situ Monitoring. ACS Macro Lett. 2017, 6 (10), 1109–1113.
45. Bian, C.; Zhou, Y.-N.; Guo, J.-K.; Luo, Z.-H. Aqueous Metal-free Atom Transfer Radical Polymerization: Experiments and Model-based Approach for Mechanistic Understanding. Macromolecules 2018, 51 (6), 2367–2376.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *