帳號:guest(3.14.254.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝沐頷
作者(外文):Hsieh, Mu-Han
論文名稱(中文):4-硝基苯乙炔修飾之氧化亞銅奈米粒子在水相進行光催化芳基硫醚氧化反應
論文名稱(外文):Photocatalytic Aryl Sulfide Oxidation in Aqueous Phase via 4-Nitrophenylacetylene-Modified Cu2O Nanocrystals
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):周鶴修
鄭彥如
口試委員(外文):Chou, Ho-Hsiu
Cheng, Yen-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023544
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:74
中文關鍵詞:晶面效應氧化亞銅光催化氧化
外文關鍵詞:facet effectCuprous oxidephotocatalytic oxidation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鑒於環境保護意識的日漸提升,近年來綠色化學已成為化學的研究主流,其中的一個分支為使用環境友善的催化劑進行光催化需氧氧化反應。本研究使用以4-硝基乙炔苯修飾的氧化亞銅菱形十二面體做為催化劑,水及甲醇作為溶劑,在藍光照射下以及氧氣環境中催化芳香硫醚氧化反應。4-硝基乙炔苯修飾氧化亞銅的程序能使產率由58%大幅提升至97%,一連串的控制實驗也測試了溶劑、反應氣體以及溫度的影響。接著我們將帶有不同芳香取代基的硫醚作為此反應的起始物,發現大部分的反應都能有不錯的產率及選擇性。最後再藉由一系列的活性物質捕捉實驗以及EPR實驗提出了可能的反應結構。
In view of the increasing awareness of environmental protection, green chemistry has become the mainstream of chemical research recent years, one of which is the use of environmentally friendly catalysts for photocatalytic aerobic oxidation reactions. In this study, 4-nitrophenylacetylene (4-NA)-modified Cu2O rhombic dodecahedra were used as catalyst, and water and methanol were used as solvents to catalyze the oxidation of aryl sulfides under blue light irradiation and oxygen environment. Compared to pristine Cu2O rhombic dodecahedra, surface 4-NA modification can significantly increase the yield from 58% to 97%. We then used thioanisoles with different aromatic substituents as starting materials for this reaction, and found that most of them have good yields and selectivity. Finally, through a series of active species capture experiments and EPR experiments, a possible reaction structure is proposed.
論文摘要 II
Abstract III
Acknowledgement IV
List of Schemes VII
List of Figures VIII
List of Tables X
List of Spectra XI
1. Introduction 1
1.1 Cu2O properties and facet effects 1
1.2 Surface modification of Cu2O 4
1.3 Cu2O crystals in organic reactions 6
1.4 Sulfoxides and their synthesis 9
2. Motivation 18
3. Experimental Section 19
3.1 Chemicals 19
3.2 Instrumentation 20
3.3 Synthesis of polyhedral Cu2O nanocrystals 20
3.4 Synthesis of 4-NA-modified Cu2O crystals 22
3.5 Cu2O crystal-catalyzed-sulfoxidation reaction 22
3.6 Radical scavenging experiment 23
3.7 Hydroxyl radical scavenging experiment 24
3.8 Singlet oxygen scavenging experiment 25
3.9 Photoexcited hole trapping experiment 25
3.10 Electron paramagnetic resonance (EPR) experiment 26
4. Results and discussion 28
4.1 Analysis of Cu2O crystals 28
4.2 Photocatalytic sulfide oxidation 33
4.3 Mechanism studies 44
4.4 Proposed mechanism 47
5. Conclusion 49
6. Spectroscopic Data of Isolated Products 50
7. References 53
1. Chen, K.; Sun, C.; Song, S.; Xue, D., Polymorphic Crystallization of Cu2O Compound. CrystEngComm 2014, 16, 5257-5267.
2. Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W., Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. J. Phys. Chem. C 2010, 114, 5073-5079.
3. Kanazawa, C.; Kamijo, S.; Yamamoto, Y., Synthesis of Imidazoles through the Copper-Catalyzed Cross-Cycloaddition between Two Different Isocyanides. J. Am. Chem. Soc. 2006, 128, 10662-10663.
4. Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B., Cu2O Nanocrystals: Surfactant-Free Room-Temperature Morphology-Modulated Synthesis and Shape-Dependent Heterogeneous Organic Catalytic Activities. J. Phys. Chem. C 2011, 115, 15288-15296.
5. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y., Nearly Monodisperse Cu2O and CuO Nanospheres:  Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 2006, 18, 867-871.
6. Zhang, S.; Yan, J.; Yang, S.; Xu, Y.; Cai, X.; Li, X.; Zhang, X.; Peng, F.; Fang, Y., Electrodeposition of Cu2O/g-C3N4 heterojunction film on an FTO substrate for enhancing visible light photoelectrochemical water splitting. Chin. J. Catal. 2017, 38, 365-371.
7. Liu, Y.; Zhu, J.; Cai, L.; Yao, Z.; Duan, C.; Zhao, Z.; Zhao, C.; Mai, W., Solution-Processed High-Quality Cu2O Thin Films as Hole Transport Layers for Pushing the Conversion Efficiency Limit of Cu2O/Si Heterojunction Solar Cells. Sol. RRL 2020, 4, 1900339.
8. Zhou, K.; Li, Y., Catalysis Based on Nanocrystals with Well-Defined Facets. Angew. Chem., Int. Ed. 2012, 51, 602-613.
9. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261-1267.
10. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H., Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155-2160.
11. Chu, C.-Y.; Huang, M. H., Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116-15123.
12. Wu, S.-C.; Tan, C.-S.; Huang, M. H., Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
13. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H., Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944-12950.
14. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H., Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582-3589.
15. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H., Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylaniline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 6, 984-994.
16. Chan, S.-J.; Kao, J.-C.; Chou, P.-J.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H., 4-Nitrophenylacetylene-Modified Cu2O Cubes and Rhombic Dodecahedra Showing Superior Photocatalytic Activity through Surface Band Structure Modulation. J. Mater. Chem. C 2022, 10, 8422-8431.
17. Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H., Photocatalytic Activity Enhancement of Cu2O Cubes Functionalized with 2-Ethynyl-6-Methoxynaphthalene through Band Structure Modulation. J. Mater. Chem. C 2022, 10, 3980-3989.
18. Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y., Easy Copper-Catalyzed Synthesis of Primary Aromatic Amines by Couplings Aromatic Boronic Acids with Aqueous Ammonia at Room Temperature. Angew. Chem., Int. Ed. 2009, 48, 1114-1116.
19. Wang, M.; Lu, J.; Ma, J.; Zhang, Z.; Wang, F., Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines. Angew. Chem., Int. Ed. 2015, 54, 14061-14065.
20. Tsang, A. S.-K; Kapat, A.; Schoenebeck, F., Factors That Control C-C Cleavage versus C-H Bond Hydroxylation in Copper-Catalyzed Oxidations of Ketones with O2. J. Am. Chem. Soc. 2016, 138, 518-526.
21. Chanda, K.; Rej, S.; Huang, M. H., Facet-Dependent Catalytic Activity of Cu2O Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click Reactions. Chem. - Eur. J. 2013, 19, 16036-16043.
22. Tsai, H. Y.; Madasu, M.; Huang, M. H., Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem. - Eur. J. 2019, 25, 1300-1303.
23. Liu, D.-H.; Sun, Y.-Z.; Kurtán, T.; Mándi, A.; Tang, H.; Li, J.; Su, L.; Zhuang, C.-L.; Liu, Z.-Y.; Zhang, W., Osteoclastogenesis Regulation Metabolites from the Coral-Associated Fungus Pseudallescheria boydii TW-1024-3. J. Nat. Prod. 2019, 82, 1274-1282.
24. Galmiche, J. P.; Bruley Des Varannes, S.; Ducrotté, P.; Sacher-Huvelin, S.; Vavasseur, F.; Taccoen, A.; Fiorentini, P.; Homerin, M., Tenatoprazole, a Novel Proton Pump Inhibitor with a Prolonged Plasma Half-Life: Effects on Intragastric pH and Comparison with Esomeprazole in Healthy Volunteers. Aliment. Pharmacol. Ther. 2004, 19, 655-662.
25. DellaGreca, M.; Iesce, M. R.; Cermola, F.; Rubino, M.; Isidori, M., Phototransformation of Carboxin in Water. Toxicity of the Pesticide and Its Sulfoxide to Aquatic Organisms. J. Agric. Food Chem. 2004, 52, 6228-6232.
26. Zhang, J.; Wei, C.; Li, S.; Hu, D.; Song, B., Discovery of Novel Bis-sulfoxide Derivatives Bearing Acylhydrazone and Benzothiazole Moieties as Potential Antibacterial Agents. Pestic. Biochem. Physiol. 2020, 167, No. 104605.
27. Drabowicz, J.; Midura, W.; Mikołajczyk, M., A Convenient Procedure for Oxidation of Sulphides to Sulphoxides by Bromine/Aqueous Potassium Hydrogen Carbonate Reagent in a Two Phase System. Synthesis of 18O-Sulphoxides. Synthesis 1979, 1979 (01), 39-40.
28. Moorthy, J. N.; Senapati, K.; Parida, K. N.; Jhulki, S.; Sooraj, K.; Nair, N. N., Twist Does a Twist to the Reactivity: Stoichiometric and Catalytic Oxidations with Twisted Tetramethyl-IBX. J. Org. Chem. 2011, 76, 9593-9601.
29. Yu, B.; Guo, C.-X.; Zhong, C.-L.; Diao, Z.-F.; He, L.-N., Metal-Free Chemoselective Oxidation of Sulfides by in situ Generated Koser’s Reagent in Aqueous Media. Tetrahedron Lett. 2014, 55, 1818-1821.
30. Legros, J.; Bolm, C., Iron-Catalyzed Asymmetric Sulfide Oxidation with Aqueous Hydrogen Peroxide. Angew. Chem., Int. Ed. 2003, 42, 5487-5489.
31. Drago, C.; Caggiano, L.; Jackson, R. F. W., Vanadium-Catalyzed Sulfur Oxidation/Kinetic Resolution in the Synthesis of Enantiomerically Pure Alkyl Aryl Sulfoxides. Angew. Chem., Int. Ed. 2005, 117, 7387-7389.
32. Wu, X.-F., A General and Selective Zinc-Catalyzed Oxidation of Sulfides to Sulfoxides. Tetrahedron Lett. 2012, 53, 4328-4331.
33. Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H., A Series of Well-Defined Metathesis Catalysts–Synthesis of [RuCl2(=CHR′)(PR3)2] and Its Reactions. Angew. Chem., Int. Ed. 1995, 34, 2039-2041.
34. Schwab, P.; Grubbs, R. H.; Ziller, J. W., Synthesis and Applications of RuCl2(=CHR')(PR3)2:  The Influence of the Alkylidene Moiety on Metathesis Activity. J. Am. Chem. Soc. 1996, 118, 100-110.
35. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H., Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953-956.
36. Heck, R. F.; Nolley, J. P., Palladium-Catalyzed Vinylic Hydrogen Substitution Reactions with Aryl, Benzyl, and Styryl Halides. J. Org. Chem. 1972, 37, 2320-2322.
37. King, A. O.; Okukado, N.; Negishi, E.-i., Highly General Stereo-, Regio-, and Chemo-Selective Synthesis of Terminal and Internal Conjugated Enynes by the Pd-Catalysed Reaction of Alkynylzinc Reagents with Alkenyl Halides. J. Chem. Soc., Chem. Commun. 1977, (19), 683-684.
38. Milstein, D.; Stille, J. K., A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium. J. Am. Chem. Soc. 1978, 100, 3636-3638.
39. Miyaura, N.; Suzuki, A., Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-enylboranes with Aryl Halides in the Presence of Palladium Catalyst. J. Chem. Soc., Chem. Commun. 1979, (19), 866-867.
40. Scarso, A.; Strukul, G., Asymmetric Sulfoxidation of Thioethers with Hydrogen Peroxide in Water Mediated by Platinum Chiral Catalyst. Adv. Synth. Catal. 2005, 347, 1227-1234.
41. Casado-Sanchez, A.; Gomez-Ballesteros, R.; Tato, F.; Soriano, F. J.; Pascual Coca, G.; Cabrera, S.; Aleman, J., Pt(II) Coordination Complexes as Visible Light Photocatalysts for the Oxidation of Sulfides Using Batch and Flow Processes. Chem. Commun. 2016, 52 (58), 9137-9140.
42. Anastas, P.; Eghbali, N., Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39 (1), 301-312.
43. Li, Y.; Luan, T.-X.; Cheng, K.; Zhang, D.; Fan, W.; Li, P.-Z.; Zhao, Y., Effective Photocatalytic Initiation of Reactive Oxygen Species by a Photoactive Covalent Organic Framework for Oxidation Reactions. ACS Materials Lett. 2022, 4, 1160-1167.
44. Lang, X.; Hao, W.; Leow, W. R.; Li, S.; Zhao, J.; Chen, X., Tertiary Amine Mediated Aerobic Oxidation of Sulfides into Sulfoxides by Visible-Light Photoredox Catalysis on TiO2. Chem. Sci. 2015, 6, 5000-5005.
45. Lang, X.; Leow, W. R.; Zhao, J.; Chen, X., Synergistic Photocatalytic Aerobic Oxidation of Sulfides and Amines on TiO2 under Visible-Light Irradiation. Chem. Sci. 2015, 6, 1075-1082.
46. Lang, X.; Zhao, J.; Chen, X., Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. Angew. Chem., Int. Ed. 2016, 55, 4697-4700.
47. Togashi, H.; Shinzawa, H.; Matsuo, T.; Takeda, Y.; Takahashi, T.; Aoyama, M.; Oikawa, K.; Kamada, H., Analysis of Hepatic Oxidative Stress Status by Electron Spin Resonance Spectroscopy and Imaging. Free Radic. Biol. Med. 2000, 28, 846-853.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Facet-Dependent Organocatalytic Activities of Au and Cu2O Nanocrystals and Facet-Dependent Optical Properties of Pd-Cu2O Core-Shell Nanocrystals
2. 合成金修飾的氧化亞銅探討高度晶面相關的光催化性質
3. 氧化亞銅奈米晶體其具晶面效應的導電性質及金-氧化亞銅、金@銀-氧化亞銅核殼奈米晶體其具晶面效應的光學性質
4. 氧化亞銅奈米粒子之光學性質與能帶結構探討與氧化亞銅與硫化鎘之異質介面所造成的光催化活性的抑制
5. 利用電子、電洞和自由基捕捉劑探討氧化亞銅晶體於光催化的晶面效應
6. 密度泛函理論佐證因能帶及電荷分佈改變使得4-硝基苯乙炔修飾的氧化亞銅粒子其染料光降解活性大幅增強
7. 多面體氧化亞銅奈米晶體光催化芳基硼酸分子羥基化反應
8. 於氧化亞銅立方體表面修飾含腈基或鹵素的乙炔基苯分子以增強其光催化活性
9. 以4-硝基苯乙炔修飾的氧化亞銅多面體進行光催化氧化伯胺耦聯反應
10. 氧化亞銅奈米晶體之晶面對電化學催化氧氣還原反應的影響
11. 利用氧化亞銅粒子進行光催化硫醇氧化反應
12. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
13. 氧化鋅與氧化鎘奈米線的合成
14. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
15. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
 
* *