|
第一章 1. Ooi, T. Thermodynamics of Protein Folding: Effects of Hydration and Electrostatic Interactions. Adv. Biophys. 1994, 30, 105–154. 2. Stefani, M. Protein Folding and Misfolding on Surfaces. Int. J. Mol. Sci. 2008, 9, 2515–2542. 3. Dobson, C. M. Protein Folding and Misfolding. Nature 2003, 426, 884–890. 4. Wirth, A. J.; Liu, Y.; Prigozhin, M. B.; Schulten, K.; Gruebele, M. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations. J. Am. Chem. Soc. 2015, 137, 7152–7159. 5. Donten, M. L.; Hamm, P. pH-Jump Induced α-helix Folding of Poly-l-glutamic Acid. Chem. Phys. 2013, 422, 124–130. 6. Xu, Y.; Oyola, R.; Gai, F. Infrared Study of the Stability and Folding Kinetics of a 15-Residue β-Hairpin. J. Am. Chem. Soc. 2003, 125, 15388–15394. 7. Huang, C.-Y.; Balakrishnan, G.; Spiro, T. G. Early Events in Apomyoglobin Unfolding Probed by Laser T-jump/UV Resonance Raman Spectroscopy. Biochemistry 2005, 44, 15734-15742. 8. Noronha, M.; Gerbelová, H.; Faria, T. Q.; Lund, D. N.; Smith, D. A.; Santos, H.; Maçanita, A. L. Thermal Unfolding Kinetics of Ubiquitin in the Microsecond-to-Second Time Range Probed by Tyr-59 Fluorescence. J. Phys. Chem. B 2010, 114, 9912–9919. 9. Nölting, B. Protein folding kinetics. Biophysical methods, 2nd ed., Springer, 2006. 10. Phillips, C. M.; Mizutani, Y.; Hochstrasser, R. M. Ultrafast Thermally Induced Unfolding of RNase A. Proc. Nat. Acad. Sci. 1995, 92, 7292–7296. 11. Williams, S.; Causgrove, T. P.; Gilmanshin, R.; Fang, K. S.; Callender, R. H.; Woodruff, W. H.; Dyer, R. B. Fast Events in Protein Folding: Helix Melting and Formation in a Small Peptide. Biochemistry 1996, 35, 691–697. 12. Dyer, R. B.; Gai, F.; Woodruff, W. H.; Gilmanshin, R.; Callender, R. H. Infrared Studies of Fast Events in Protein Folding. Acc. Chem. Res. 1998, 31, 709–716. 13. Kubelka, J. Time-Resolved Methods in Biophysics. 9. Laser Temperature-Jump Methods for Investigating Biomolecular Dynamics. Photochem. Photobiol. Sci. 2009, 8, 499-512. 14. Shankar, G. M.; Walsh, D. M. Alzheimer's disease: Synaptic Dysfunction and Aβ. Mol. Neurodegener. 2009, 4, 48. 15. Esch, F. S.; Keim, P. S.; Beattie, E. C.; Blacher, R. W.; Culwell, A. R.; Oltersdorf, T.; McClure, D.; Ward, P. J. Cleavage of Amyloid β Peptide During Constitutive Processing of Its Precursor. Science 1990, 248, 1122–1124. 16. Hardy, J. A.; Higgins, G. A. Alzheimer's Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. 17. Suzuki, N.; Cheung, T. T.; Cai, X.-D.; Odaka, A.; Otvos Jr, L.; Eckman, C.; Golde, T. E.; Younkin, S. G. An Increased Percentage of Long Amyloid β Protein Secreted by Familial Amyloid β Protein Precursor (βAPP717) Mutants. Science 1994, 264, 1336–1340. 18. Harper, J. D.; Lansbury Jr, P. T. Models of Amyloid Seeding in Alzheimer's Disease and Scrapie: Mechanistic Truths and Physiological Consequences of the Time-Dependent Solubility of Amyloid Proteins. Annu. Rev. Biochem. 1997, 66, 385–407. 19. Terol, P. A.; Kumita, J. R.; Hook, S. C.; Dobson, C. M.; Esbjörner, E. K. Solvent Exposure of Tyr10 as a Probe of Structural Differences between Monomeric and Aggregated Forms of the Amyloid-β Peptide. Biochem. Biophys. Res. Commun. 2015, 468, 696–701. 20. Qiu, T.; Liu, Q.; Chen, Y.-X.; Zhaoa, Y.-F.; Li, Y.-M. Aβ42 and Aβ40: Similarities and Differences. J. Pept. Sci. 2015, 21, 522–529. 21. Walsh, D. M.; Klyubin, I.; Fadeeva, J. V.; Cullen, W. K.; Anwyl, R.; Wolfe, M. S.; Rowan, M. J.; Selkoe, D. J. Naturally Secreted Oligomers of Amyloid β Protein Potently Inhibit Hippocampal Long-Term Potentiation in Vivo. Nature 2002, 416, 535–539. 22. Hsia, A. Y.; Masliah, E.; McConlogue, L.; Yu, G.-Q.; Tatsuno, G.; Hu, K.; Kholodenko, D.; Malenka Robert, C.; Nicoll Roger, A.; Mucke, L. Plaque-Independent Disruption of Neural Circuits in Alzheimer’s Disease Mouse Models. Proc. Nat. Acad. Sci. 1999, 96, 3228–3233. 23. Chen, G.-f.; Xu, T.-h.; Yan, Y.; Zhou, Y.-r.; Jiang, Y.; Melcher, K.; Xu, H. E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. 24. Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R. B. G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schröder, G. F. Fibril Structure of Amyloid-β(1–42) by Cryo–Electron Microscopy. Science 2017, 358, 116–119. 25. Xue, C.; Lin, T. Y.; Chang, D.; Guo, Z. Thioflavin T as An Amyloid Dye: Fibril Quantification, Optimal Concentration and Effect on Aggregation. Royal Soc. Open Sci. 2017, 4, 160696. 26. Fu, Z.; Aucoin, D.; Davis, J.; Van Nostrand, W. E.; Smith, S. O. Mechanism of Nucleated Conformational Conversion of Aβ42. Biochemistry 2015, 54, 4197–4207. 27. Johansson, A.-S.; Berglind-Dehlin, F.; Karlsson, G.; Edwards, K.; Gellerfors, P.; Lannfelt, L. Physiochemical Characterization of the Alzheimer's Disease-Related Peptides Aβ1-42Arctic and Aβ1-42wt. FEBS J. 2006, 273, 2618–2630. 28. Khachaturian, Z. S. Diagnosis of Alzheimer's Disease. Arch. Neurol. 1985, 42, 1097–1105. 29. Oddo, S.; Caccamo, A.; Shepherd, J. D.; Murphy, M. P.; Golde, T. E.; Kayed, R.; Metherate, R.; Mattson, M. P.; Akbari, Y.; LaFerla, F. M.; LaFerla, F. M. Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles: Intracellular Aβ and Synaptic Dysfunction. Neuron 2003, 39, 409–421. 30. Reitz, C.; Brayne, C.; Mayeux, R. Epidemiology of Alzheimer Disease. Nat. Rev. Neurosci. 2011, 7, 137–152. 31. Khalsa, D. S.; Perry, G. The Four Pillars of Alzheimer's Prevention. LID - cer-03-17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501038/. (accessed on 2022. 7. 4) 32. Prince, M.; Comas-Herrera, A.; Knapp, M.; Guerchet, M.; Karagiannidou, M. World Alzheimer Report 2016: The Global Impact of Dementia. Alzheimer's Disease International (ADI), London. 33. Wu, T.-H.; Lai, R.-H.; Yao, C.-N.; Juang, J.-L.; Lin, S.-Y. Supramolecular Bait to Trigger Non-Equilibrium Co-Assembly and Clearance of Aβ42. Angew. Chem. Int. Ed. 2021, 60, 4014–4017. 34. Mizushima, N.; Yoshimori, T.; Levine, B. Methods in Mammalian Autophagy Research Cell 2010, 140, 313–326. 35. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948–1954. 36. Galdo, S. D.; Mancini, G.; Daidone, I.; Polzi, L. Z.; Amadei, A.; Barone, V. Tyrosine Absorption Spectroscopy: Backbone Protonation Effects on the Side Chain Electronic Properties. J. Comput. Chem. 2018, 39, 1747–1756. 37. Kerwin, B. A.; Remmele Jr, R. L. Protect from Light: Photodegradation and Protein Biologics. J. Pharm. Sci. 2007, 96, 1468–1479. 38. Neves-Petersen, M. T.; Klitgaard, S.; Pascher, T.; Skovsen, E.; Polivka, T.; Yartsev, A.; Sundström, V.; Petersen, S. B. Flash Photolysis of Cutinase: Identification and Decay Kinetics of Transient Intermediates Formed upon UV Excitation of Aromatic Residues. Biophys. J. 2009, 97, 211–226. 39. Shimizu, O. Excited States in Photodimerization of Aqueous Tyrosine at Room Temperature. Photochem. Photobiol. 2008, 18, 125–133. 40. Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499–509. 41. Bent, D. V.; Hayon, E. Excited State Chemistry of Aromatic Amino Acids and Related Peptides. I. Tyrosine. J. Am. Chem. Soc. 1975, 97, 2599–2606. 42. Ghisaidoobe, A. B.; Chung, S. J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. 43. Cui, L.; Ma, Y.; Li, M.; Wei, Z.; Huan, Y.; Li, H.; Fei, Q.; Zheng, L. Tyrosine-Reactive Cross-Linker for Probing Protein Three-Dimensional Structures. Anal. Chem. 2021, 93, 4434–4440. 44. Haas, E. Local Structure in a Tryptic Fragment of Performic Acid Oxidized Ribonuclease A Corresponding to a Proposed Polypeptide Chain-Folding Initiation Site Detected by Tyrosine Fluorescence Lifetime and Proton Magnetic Resonance Measurements. Biochemistry 1987, 26. 1672–1683. 45. Kilhoffer, M. C.; Demaille, J. G.; Gerard, D. Tyrosine Fluorescence of Ram Testis and Octopus Calmodulins. Effects of Calcium, Magnesium, and Ionic Strength. Biochemistry 1981, 20, 4407–4414. 46. Vattepu, R.; Klausmeyer, R. A.; Ayella, A.; Yadav, R.; Dille, J. T.; Saiz, S. V.; Beck, M. A.-O. Conserved Tryptophan Mutation Disrupts Structure and Function of Immunoglobulin Domain Revealing Unusual Tyrosine Fluorescence. Protein Sci. 2020, 29, 2062–2074. 47. Conchello, J. A.; Lichtman, J. W. Optical Sectioning Microscopy. Nat. Methods. 2005, 2, 920–931. 48. Schrof, W.; Klingler, J.; Heckmann, W.; Horn, D. Confocal Fluorescence and Raman Microscopy in Industrial Research. Colloid Polym. Sci. 1998, 276, 577–588. 49. Nwaneshiudu, A.; Kuschal, C.; Sakamoto, F. H.; Rox Anderson, R.; Schwarzenberger, K.; Young, R. C. Introduction to Confocal Microscopy. J. Invest. Dermatol. 2012, 132, 1–5. 50. Ludwig, M.-G.; Vanek, M.; Guerini, D.; Gasser, J. A.; Jones, C. E.; Junker, U.; Hofstetter, H.; Wolf, R. M.; Seuwen, K. Proton-Sensing G-Protein-Coupled Receptors. Nature 2003, 425, 93–98. 第二章 1. Skoog, D. A.; West, M. W.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, 9th ed., Thomson Brooks/Cole: Belmont, CA, 2014, pp. 658–660. 2. Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997, pp. 92. 3. Harvey, D. Modern Analytical Chemistry, 1st ed., McGraw-Hill: New York, 2000, pp. 380–388. 4. Banerjee, B.; Misra, G.; Ashraf, M. T. Data Processing Handbook for Complex Biological Data Sources. Circular dichroism. Academic Press: 2019, pp. 21–30. 5. Nordén, B.; Rodger, A.; Dafforn, T. Linear Dichroism and Circular Dichroism: A Textbook on Polarized-Light Spectroscopy. Royal Society of Chemistry, 2010, pp. 3–4. 6. 王珮云,用溫度躍升後色胺酸螢光強度之變化區分蛋白質動態過程:牛血清白蛋白及人血清白蛋白之比較,2021,國立清華大學。 7. Woody, R. W. Circular Dichroism and the Conformational Analysis of Biomolecules. Theory of Circular Dichroism of Proteins. Springer: 1996, pp. 25–28. 8. Wallace, B.; Janes, R. Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy. IOS Press BV: Amsterdam, 2009, pp. 1–13. 9. 江素玉; 李政怡; 馮學深; 蔡宛霖; 羅祥文 同步輻射圓二色光譜實驗站與應用 科儀新知,2009,第三十卷第五期 98.4 pp. 9–17. 10. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392–400. 11. Bhagavan, N. V. Medical Biochemistry. Three-Dimensional Structure of Proteins. Academic Press: San Diego, 2002, pp. 51–65. 12. Roberts, G. C. K. Encyclopedia of Biophysics, 1st ed., Springer: Berlin, Heidelberg, 2013, pp. 726–729. 13. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 7th ed., Cengage Learning: Boston, MA, 2016, pp. 362–364. 第三章 1. Fu, Z.; Aucoin, D.; Davis, J.; Van Nostrand, W. E.; Smith, S. O. Mechanism of Nucleated Conformational Conversion of Aβ42. Biochemistry 2015, 54, 4197–4207. 2. USB4000 Fiber Optic Spectrometer: Installation and Operation Manual. Dunedin, FL: Ocean Optics, Inc., 2008, pp 17–23. 3. Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499–509. 4. 楊智淳,以溫度躍升法研究人血清白蛋白於失溫及正常溫度區間之蛋白質動態過程,2021,國立清華大學。 第四章 1. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer: Baltimore, Maryland, USA, 2006, pp. 532. 2. Das, S.; Das, S.; Roy, A.; Pal, U.; Maiti, N. C. Orientation of Tyrosine Side Chain in Neurotoxic Aβ Differs in Two Different Secondary Structures of the Peptide. Royal Soc. Open Sci. 2016, 3, 160112. 3. Szabo, A. G.; Lynn, K. R.; Krajcarski, D. T.; Rayner, D. M. Tyrosinate Fluorescence Maxima at 345 nm in Proteins Lacking Tryptophan at pH 7. FEBS Lett. 1978, 94, 249–252. 4. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392–400. 5. Goldfarb, A. R.; Saidel, L. J.; Mosovich, E. The Ultraviolet Absorption Spectra of Proteins. J. Biol. Chem. 1951, 193, 397–404. 6. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948–1954. 7. Bhagavan, N. V. Medical Biochemistry. Three-Dimensional Structure of Proteins. Academic Press: San Diego, 2002, pp. 51–65. 8. Terol, P. A.; Kumita, J. R.; Hook, S. C.; Dobson, C. M.; Esbjörner, E. K. Solvent Exposure of Tyr10 as a Probe of Structural Differences between Monomeric and Aggregated Forms of the Amyloid-β Peptide. Biochem. Biophys. Res. Commun. 2015, 468, 696–701. 9. Fu, Z.; Aucoin, D.; Davis, J.; Van Nostrand, W. E.; Smith, S. O. Mechanism of Nucleated Conformational Conversion of Aβ42. Biochemistry 2015, 54, 4197–4207. 10. Vattepu, R.; Klausmeyer, R. A.; Ayella, A.; Yadav, R.; Dille, J. T.; Saiz, S. T.; Beck, M. R. Conserved Tryptophan Mutation Disrupts Structure and Function of Immunoglobulin Domain Revealing Unusual Tyrosine Fluorescence. Protein Sci. 2020, 29, 2062–2074. 11. Cornog, J. L., Jr.; Adams, W. R. The Fluorescence of Tyrosine in Alkaline Solution. Biochim. Biophys. Acta 1963, 66, 356–365. 12. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer: Baltimore, Maryland, USA, 2006, pp. 530–531. 13. Yang, Y.; Arseni, D.; Zhang, W.; Huang, M.; Lövestam, S.; Schweighauser, M.; Kotecha, A.; Murzin, A. G.; Peak-Chew, S. Y.; Macdonald, J.; Lavenir, I.; Garringer, H. J.; Gelpi, E.; Newell, K. L.; Kovacs, G. G.; Vidal, R.; Ghetti, B.; Ryskeldi-Falcon, B.; Scheres, S. H. W.; Goedert, M. Cryo-EM Structures of Amyloid-β 42 Filaments from Human Brains. Science 2022, 375, 167–172. 14. Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R. B. G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schröder, G. F. Fibril Structure of Amyloid-β(1–42) by Cryo–Electron Microscopy. Science 2017, 358, 116–119. 15. Wu, T.-H.; Lai, R.-H.; Yao, C.-N.; Juang, J.-L.; Lin, S.-Y. Supramolecular Bait to Trigger Non-Equilibrium Co-Assembly and Clearance of Aβ42. Angew. Chem. Int. Ed. 2021, 60, 4014–4017. 16. Ibrahim, M.; Alaam, M.; El-Haes, H.; Jalbout, A. F.; Leon, A. D. Analysis of the Structure and Vibrational Spectra of Glucose and Fructose. Eclet. Quím. 2006, 31, 15–21. 附錄B 1. Fu, Z.; Aucoin, D.; Davis, J.; Van Nostrand, W. E.; Smith, S. O. Mechanism of Nucleated Conformational Conversion of Aβ42. Biochemistry 2015, 54, 4197–4207. 2. Das, S.; Das, S.; Roy, A.; Pal, U.; Maiti, N. C. Orientation of Tyrosine Side Chain in Neurotoxic Aβ Differs in Two Different Secondary Structures of the Peptide. Royal Soc. Open Sci. 2016, 3, 160112. 3. Szabo, A. G.; Lynn, K. R.; Krajcarski, D. T.; Rayner, D. M. Tyrosinate Fluorescence Maxima at 345 nm in Proteins Lacking Tryptophan at pH 7. FEBS Lett. 1978, 94, 249–252. 4. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392–400. 5. Goldfarb, A. R.; Saidel, L. J.; Mosovich, E. The Ultraviolet Absorption Spectra of Proteins. J. Biol. Chem. 1951, 193, 397–404.
|