帳號:guest(3.144.28.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李沅容
作者(外文):Lee, Yuan-Jung
論文名稱(中文):利用酵素重組Fc寡醣進行專一性抗體修飾
論文名稱(外文):Site-Specific Modification of Antibody through Enzymatic Remodeling of its Fc-Glycan
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
口試委員(中文):林伯樵
李珮甄
口試委員(外文):Lin, Po-Chiao
Li, Pei-Jhen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023527
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:112
中文關鍵詞:抗體N-聚醣醣基轉移酶專一性抗體修飾
外文關鍵詞:antibodyN-glycanglycosyltransferasesite-specific modification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:405
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
抗體是一種被廣泛應用於基礎研究、疾病診斷及治療的生物分子。然而,大多數的應用需要抗體專一性地修飾上功能分子;先前的研究,大多是透過抗體上的一級胺或樞紐點的雙硫鍵進行修飾,這樣的修飾方式有許多缺點,例如會導致異質產物生成且會影響到抗體的結構。
為了解決這些問題,利用天然抗體位於Asn-297上的Fc寡醣,進行醣類酵素專一性修飾,成為本研究的首要目標;同時,可利用醣類相關酵素將具有疊氮基團的醣體成功地引入抗體中,而疊氮基團是一種不存在於生物系統中的生物正交分子,可與炔烴進行環狀加成反應,如此一來便可將功能分子以此方法進行連接。
在本論文研究中,我們提供了一種簡單的製備方法進行抗體修飾。首先,我們利用化學酵素法,製備帶有疊氮基修飾之胞苷單磷酸唾液酸醣予體;而後,使用一系列醣基轉移酶有效地將天然醣體及疊氮基修飾的醣體引入抗體上;最後,經過修飾的同質抗體可利用鍵擊反應將特定分子專一性地連接在抗體上。此外,為了確認修飾效率,我們透過鍵擊反應連接上螢光分子觀察訊號,同時也利用N-糖苷酶F水解Fc-上寡糖,再利用MALDI-TOF MS進行醣體的質譜分析。
Antibodies are biomolecules that are widely used as affinity reagents for many applications in research, disease diagnostics, and therapies. Most of these applications require the modification of antibody with a specific functional moiety. However, the traditional conjugation methods by targeting primary amines or hinge disulfides have a number of drawbacks including heterogeneous product profiles and structure alteration.
To overcome these drawbacks, the natural occurring Fc-glycan on the antibody is the interesting target for site-specific modification due to its presence at Asn-297 and easily modulated by sugar possessing enzymes to incorporate azido functional group. As a result, the bioorthogonal cycloaddition between azide and alkynes can be achieved to successfully introduced desired molecule on modified antibody.
In this research, we developed a facile strategy for antibody modification. First, we used chemoenzymatic approach to synthesize sialic acid donor, CMP-Neu5Az. Then, a series of glycosyltransferases were applied to orderly and high efficiently install natural glycans and azide-functionalized glycans into antibodies. Finally, the homogenous modified antibody was conjugated with desired molecule by click chemistry to achieve the site-specific conjugation. In addition, to ensure the modification efficiency, we not only made the fluorescent molecules clicked with antibody to check the signal on SDS-PAGE, but also utilized PNGase F to digest the Fc-glycan followed by MALDI-TOF-MS analysis.
摘要 I
Abstract II
縮寫對照表 (abbreviation) IV
酵素中英文名稱對照表 VII
單醣中英文名稱及代表符號 VIII
目錄 IX
圖目錄 XI
流程圖目錄 XIV
表目錄 XV
壹. 緒論 1
1.1 抗體的結構及功能 1
1.1.1 抗體的結構 1
1.1.2 抗體的功能 3
1.2 抗體的修飾方法及應用 6
1.2.1 目前已開發之抗體藥物 6
1.2.2 基因工程 7
1.2.3 抗體工程技術 8
1.2.4 醣體修飾 10
1.3 生物正交性化學 17
1.3.1 鍵擊化學 18
1.3.2 鍵擊化學的應用 19
1.4 酵素 20
1.4.1 醣激酶及磷酸醣核苷酸轉移酶 20
1.4.2唾液酸醛醇縮酶 26
1.4.3醣基轉移酶 27
1.4.4 唾液酸水解酶 39
1.4.5 N-醣苷酶F 40
1.5回顧分析醣蛋白N-寡醣之策略 40
1.6 研究目標與動機 46
貳、實驗結果與討論 47
2.1 以大腸桿菌誘導表現目標蛋白 47
2.1.1 勝任細胞 47
2.1.2 目標酵素純化與表現分析 48
2.1.3 酵素表達分析 52
2.1.4 酵素活性測試 56
2.2以化學及酵素法合成疊氮基唾液酸相關醣體 59
2.3 抗體修飾 61
2.3.1 抗體修飾策略 62
2.3.2抗體修飾結果與討論 68
2.4. 抗體藥物 77
參、結論與未來展望 81
肆. 實驗部分 82
參考文獻 98
附錄 i

1. Goulet, D. R.; Atkins, W. M. Considerations for the Design of Antibody-Based Therapeutics. J. Pharm. Sci. 2020, 109, 74-103.
2. Mattu, T. S.; Pleass, R. J.; Willis, A. C.; Kilian, M.; Wormald, M. R.; Lellouch, A. C.; Rudd, P. M.; Woof, J. M.; Dwek, R. A. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J. Biol. Chem. 1998, 273 , 2260-2272.
3. Janeway Jr, C. A.; Travers, P.; Walport, M.; Shlomchik, M. J. The structure of a typical antibody molecule. In Immunobiology: The Immune System in Health and Disease. 5th edition, Garland Science, 2001.
4. Woof, J. M.; Burton, D. R. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol 2004, 4, 89-99.
5. Ravetch, J. V.; Bolland, S. Igg fc receptors. Annu. Rev. Immunol. 2001, 19, 275-290.
6. Wang, Q.; Chung, C. Y.; Chough, S.; Betenbaugh, M. J. Antibody glycoengineering strategies in mammalian cells. Biotechnol. Bioeng 2018, 115, 1378-1393.
7. Lu, L. L.; Suscovich, T. J.; Fortune, S. M.; Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol 2018, 18, 46-61.
8. Arnold, J. N.; Wormald, M. R.; Sim, R. B.; Rudd, P. M.; Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 2007, 25, 21-50.
9. Pabst, O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol 2012, 12, 821-832.
10. Sun, X.; Ponte, J. F.; Yoder, N. C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M. Effects of drug–antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody–maytansinoid conjugates. Bioconjugate Chem. 2017, 28, 1371-1381.
11. Wu, K.-L.; Yu, C.; Lee, C.; Zuo, C.; Ball, Z. T.; Xiao, H. Precision Modification of Native Antibodies. Bioconjugate Chem. 2021, 32, 1947-1959.
12. Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 2021, 50, 1305-1353.
13. Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26, 925-932.
14. Kandari, D.; Bhatnagar, R. Antibody engineering and its therapeutic applications. Int. Rev. Immunol. 2021, 1-28.
15. Nobre, C. F.; Newman, M. J.; DeLisa, A.; Newman, P. Moxetumomab pasudotox-tdfk for relapsed/refractory hairy cell leukemia: a review of clinical considerations. Cancer Chemother. Pharmacol. 2019, 84, 255-263.
16. Maher, J.; Adami, A. A. Antitumor immunity: easy as 1, 2, 3 with monoclonal bispecific trifunctional antibodies? Cancer Res. 2013, 73, 5613-5617.
17. Goel, N.; Stephens, S. Certolizumab pegol. In MAbs, 2010, 137-147.
18. Markham, A. Brolucizumab: First Approval. Drugs 2019, 79, 1997-2000.
19. Makris, M.; Iorio, A.; Lenting, P. J. Emicizumab and thrombosis: the story so far. J. Thromb. Haemost. 2019, 17, 1269-1272.
20. Zhou, Q.; Stefano, J. E.; Manning, C.; Kyazike, J.; Chen, B.; Gianolio, D. A.; Park, A.; Busch, M.; Bird, J.; Zheng, X. Site-specific antibody–drug conjugation through glycoengineering. Bioconjugate Chem. 2014, 25, 510-520.
21. Ramakrishnan, B.; Qasba, P. K. Structure-based design of β1, 4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens β4Gal-T1 donor specificity. J. Biol. Chem. 2002, 277, 20833-20839.
22. Zeglis, B. M.; Davis, C. B.; Aggeler, R.; Kang, H. C.; Chen, A.; Agnew, B. J.; Lewis, J. S. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjugate Chem. 2013, 24, 1057-1067.
23. Li, X.; Fang, T.; Boons, G. J. Preparation of Well‐Defined Antibody–Drug Conjugates through Glycan Remodeling and Strain‐Promoted Azide–Alkyne Cycloadditions. Angew. Chem. Int. Ed. 2014, 126, 7307-7310.
24. Okeley, N. M.; Toki, B. E.; Zhang, X.; Jeffrey, S. C.; Burke, P. J.; Alley, S. C.; Senter, P. D. Metabolic engineering of monoclonal antibody carbohydrates for antibody–drug conjugation. Bioconjugate Chem. 2013, 24, 1650-1655.
25. Parsons, T. B.; Struwe, W. B.; Gault, J.; Yamamoto, K.; Taylor, T. A.; Raj, R.; Wals, K.; Mohammed, S.; Robinson, C. V.; Benesch, J. L. Optimal synthetic glycosylation of a therapeutic antibody. Angew. Chem. Int. Ed. 2016, 55, 2361-2367.
26. Whitworth, C.; Ciulli, A. New class of molecule targets proteins outside cells for degradation. Nature Publishing Group: 2020.
27. Zhang, X.; Liu, H.; He, J.; Ou, C.; Donahue, T. C.; Muthana, M. M.; Su, L.; Wang, L.-X. Site-Specific Chemoenzymatic Conjugation of High-Affinity M6P Glycan Ligands to Antibodies for Targeted Protein Degradation. ACS Chem. Biol. 2022.
28. Zhu, Z.; Ramakrishnan, B.; Li, J.; Wang, Y.; Feng, Y.; Prabakaran, P.; Colantonio, S.; Dyba, M. A.; Qasba, P. K.; Dimitrov, D. S. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. In MAbs, 2014, 1190-1200.
29. Van Geel, R.; Wijdeven, M. A.; Heesbeen, R.; Verkade, J. M.; Wasiel, A. A.; van Berkel, S. S.; van Delft, F. L. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjugate Chem. 2015, 26, 2233-2242.
30. Tang, F.; Yang, Y.; Tang, Y.; Tang, S.; Yang, L.; Sun, B.; Jiang, B.; Dong, J.; Liu, H.; Huang, M. One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody–drug conjugates. Org. Biomol. Chem. 2016, 14, 9501-9518.
31. Tang, F.; Wang, L.-X.; Huang, W. Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody–drug conjugates. Nat. Protoc. 2017, 12, 1702-1721.
32. Battigelli, A.; Almeida, B.; Shukla, A. Recent Advances in Bioorthogonal Click Chemistry for Biomedical Applications. Bioconjugate Chem. 2022, 33, 263-271.
33. Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007-2010.
34. Lang, K.; Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Publications 2014.
35. Suazo, K. F.; Park, K.-Y.; Distefano, M. D. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem. Rev. 2021, 121, 7178-7248.
36. Fan, C.-Y.; Kawade, S. K.; Adak, A. K.; Cho, C.; Tan, K.-T.; Lin, C.-C. Silver-coated Cu2O nanoparticle substrates for surface azide–alkyne cycloaddition. ACS Appl. Nano Mater. 2021, 4, 1558-1566.
37. Lairson, L.; Henrissat, B.; Davies, G.; Withers, S. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555.
38. Taniguchi, N.; Endo, T.; Hart, G. W.; Seeberger, P. H.; Wong, C.-H. Glycoscience: biology and medicin, 2015.
39. Li, S. P.; Hsiao, W. C.; Yu, C. C.; Chien, W. T.; Lin, H. J.; Huang, L. D.; Lin, C. H.; Wu, W. L.; Wu, S. H.; Lin, C. C. Characterization of Meiothermus taiwanensis Galactokinase and its use in the one‐pot enzymatic synthesis of Uridine Diphosphate‐Galactose and the chemoenzymatic synthesis of the carbohydrate antigen stage specific embryonic antigen‐3. Adv. Synth. Catal. 2014, 356, 3199-3213.
40. Litterer, L.; Schnurr, J.; Plaisance, K.; Storey, K.; Gronwald, J.; Somers, D. Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant physiology and Biochem. 2006, 44, 171-180.
41. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J. Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP). Bioorganic Med. Chem. Lett. 2013, 23, 3764-3768.
42. Knorst, M.; Fessner, W. D. CMP‐Sialate Synthetase from Neisseria meningitidis− Overexpression and Application to the Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698-710.
43. Yu, H.; Yu, H.; Karpel, R.; Chen, X. Chemoenzymatic synthesis of CMP–sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP–sialic acid synthetases. Bioorganic Med. Chem. Lett. 2004, 12, 6427-6435.
44. Li, Y.; Yu, H.; Cao, H.; Lau, K.; Muthana, S.; Tiwari, V. K.; Son, B.; Chen, X. Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl. Microbiol. Biotechnol. 2008, 79, 963-970.
45. Ramakrishnan, B.; Ramasamy, V.; Qasba, P. K. Structural Snapshots of β-1,4-Galactosyltransferase-I Along the Kinetic Pathway. J. Mol. Biol. 2006, 357, 1619-1633.
46. Morrison, J.; Ebner, K. Studies on galactosyltransferase: Kinetic investigations with glucose as the galactosyl group acceptor. J. Biol. Chem. 1971, 246, 3985-3991.
47. Al-Majid, A. M.; Islam, M. S.; Barakat, A.; Al-Qahtani, N. J.; Yousuf, S.; Iqbal Choudhary, M. Tandem Knoevenagel–Michael reactions in aqueous diethylamine medium: A greener and efficient approach toward bis-dimedone derivatives. Arab. J. Chem. 2017, 10, 185-193.
48. Angelastro, A.; Barkhanskiy, A.; Mattey, A. P.; Pallister, E. G.; Spiess, R.; Goundry, W.; Barran, P.; Flitsch, S. L. Galactose Oxidase Enables Modular Assembly of Conjugates from Native Antibodies with High Drug‐to‐Antibody Ratios. ChemSusChem 2022, 15, e202102592.
49. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M. Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
50. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X. Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. ChemComm 2010, 46, 6066-6068.
51. Logan, S.; Conlan, J.; Monteiro, M.; Wakarchuk, W.; Altman, E. Functional genomics of Helicobacter pylori: identification of a β‐1, 4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol. Microbiol. 2000, 35, 1156-1167.
52. Fang, J. L.; Tsai, T. W.; Liang, C. Y.; Li, J. Y.; Yu, C. C. Enzymatic synthesis of human milk fucosides α1,2‐fucosyl para‐Lacto‐N‐Hexaose and its isomeric derivatives. Adv. Synth. Catal. 2018, 360, 3213-3219.
53. Meng, L.; Forouhar, F.; Thieker, D.; Gao, Z.; Ramiah, A.; Moniz, H.; Xiang, Y.; Seetharaman, J.; Milaninia, S.; Su, M. Enzymatic basis for N-glycan sialylation: structure of rat α2, 6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. J. Biol. Chem. 2013, 288, 34680-34698.
54. Moh, E. S. X.; Sayyadi, N.; Packer, N. H. Chemoenzymatic glycan labelling as a platform for site-specific IgM-antibody drug conjugates. Anal. Biochem. 2019, 584, 113385.
55. Yamamoto, T.; Nakashizuka, M.; Kodama, H.; Kajihara, Y.; Terada, I. Purification and characterization of a marine bacterial β-galactoside α2, 6-sialyltransferase from Photobacterium damsela JTO16O. J. Biochem. 1996, 120, 104-110.
56. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X. Highly Efficient Chemoenzymatic Synthesis of Naturally Occurring and Non‐Natural α‐2, 6‐Linked Sialosides: A P. damsela α‐2, 6‐Sialyltransferase with Extremely Flexible Donor–Substrate Specificity. Angew. Chem. Int. Ed. 2006, 118, 4042-4048.
57. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T. Photobacterium sp. JT-ISH-224 produces two sialyltransferases, α-/β-galactoside α2, 3-sialyltransferase and β-galactoside α2, 6-sialyltransferase. J. Biochem. 2008, 143, 187-197.
58. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X. Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. ChemComm 2011, 47, 8691-8693.
59. Wang, M.; Wang, Y.; Liu, K.; Dou, X.; Liu, Z.; Zhang, L.; Ye, X.-S. Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody. Org. Biomol. Chem. 2020, 18, 2886-2892.
60. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X. A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
61. Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X. A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating LewisX. ACS Chem. Biol. 2012, 7, 1232-1240.
62. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W. Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384 Identification of The Glycosyltransferase Genes, Enzymatic Synthesis of Model Compounds and Characterization of Nanomole Amounts by 600-MHz 1H and 13C NMR. J. Biol. Chem. 2000, 275, 3896-3906.
63. Morley, T. J.; Withers, S. G. Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437.
64. Xu, G.; Li, X.; Andrew, P. W.; Taylor, G. L. Structure of the Catalytic Domain of Streptococcus pneumoniae Sialidase NanA. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008, 64, 772–775.
65. Tasnima, N.; Yu, H.; Li, Y.; Santra, A.; Chen, X. Chemoenzymatic Synthesis of para-Nitrophenol (pNP)-Tagged α2-8-Sialosides and High-Throughput Substrate Specificity Studies of α2-8-Sialidases. Org. Biomol. Chem. 2017, 15, 160-167.
66. Tarentino, A. L.; Gomez, C. M.; Plummer, T. H. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochem. 1985, 24, 4665-4671.
67. Viseux, N.; Hronowski, X.; Delaney, J.; Domon, B. Qualitative and quantitative analysis of the glycosylation pattern of recombinant proteins. Anal. Chem. 2001, 73, 4755-4762.
68. Raju, T. S.; Briggs, J. B.; Borge, S. M.; Jones, A. J. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 2000, 10, 477-486.
69. Shrivastava, A.; Joshi, S.; Guttman, A.; Rathore, A. S. N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Anal. Chim. Acta 2022, 339828.
70. Carillo, S.; Pérez-Robles, R.; Jakes, C.; Ribeiro da Silva, M.; Millán Martín, S.; Farrell, A.; Navas, N.; Bones, J. Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies. J. Pharm. Anal. 2020, 10, 23-34.
71. Šagi, D.; Peter‐Katalinić, J. MALDI‐MS of glycans. MALDI MS: A practical guide to instrumentation, methods and applications 2007, 181-214.
72. Andrew, S. M.; Titus, J. A.; Zumstein, L. Dialysis and concentration of protein solutions. Curr Protoc Toxicol 2002, Appendix 3, A.3h.1-5.
73. West, C.; Elfakir, C.; Lafosse, M. Porous graphitic carbon: A versatile stationary phase for liquid chromatography. J. Chromatogr. A 2010, 1217, 3201-3216.
74. Packer, N. H.; Lawson, M. A.; Jardine, D. R.; Redmond, J. W. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj. J. 1998, 15, 737-747.
75. Lin, Z.; Lubman, D. M. Permethylated N-glycan analysis with mass spectrometry. Methods Mol. Biol. 2013, 1007, 289-300.
76. Graham, R. L.; Hess, S. Mass spectrometry in the elucidation of the glycoproteome of bacterial pathogens. Curr. Proteom. 2010, 7, 57-81.
77. Mbua, N. E.; Li, X.; Flanagan‐Steet, H. R.; Meng, L.; Aoki, K.; Moremen, K. W.; Wolfert, M. A.; Steet, R.; Boons, G. J. Selective Exo‐Enzymatic Labeling of N‐Glycans on the Surface of Living Cells by Recombinant ST6Gal I. Angew. Chem. Int. Ed. 2013, 52, 13012-13015.
78. Engel, S.; Spitzer, D.; Rodrigues, L. L.; Fritz, E.-C.; Straßburger, D.; Schönhoff, M.; Ravoo, B. J.; Besenius, P. Kinetic control in the temperature-dependent sequential growth of surface-confined supramolecular copolymers. Faraday Discuss. 2017, 204, 53-67.
79. Shen, L.; Cai, K.; Yu, J.; Cheng, J. Novel liposomal azido mannosamine lipids on metabolic cell labeling and imaging via Cu-free click chemistry. Bioconjugate Chem. 2019, 30, 2317-2322.
80. Anumula, K. R.; Taylor, P. B. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 1992, 203, 101-108.
81. Adak, A. K.; Huang, K. T.; Liao, C. Y.; Lee, Y. J.; Kuo, W. H.; Huo, Y. R.; Li, P. J.; Chen, Y. J.; Chen, B. S.; Chen, Y. J. Investigating a Boronate‐Affinity‐Guided Acylation Reaction for Labelling Native Antibodies. Chemistry–A European Journal 2022, 28, e202104178
(此全文20270808後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *