帳號:guest(3.133.123.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王泓凱
作者(外文):Wang, Hung-Kai
論文名稱(中文):以細菌來源之醣基轉移酶探討其受質容忍度對於可調控之酵素合成法合成不對稱支鏈型HMOs與VIM-2抗原
論文名稱(外文):Explore the Substrate Tolerance of Bacterial Glycosyltransferases Toward the Development of Controllable Enzymatic synthesis of Asymmetric, branched HMOs and VIM-2 Antigens
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
口試委員(中文):梁健夫
游景晴
口試委員(外文):Liang, Chien-Fu
Yu, Ching-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023519
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:385
中文關鍵詞:醣基轉移酶人類母乳寡醣化學酵素法
外文關鍵詞:GlycosyltransferaseHMOsChemoenzymatic synthesis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
擁有各種多樣化的寡醣體對於研究功能性醣體學來說是非常重要的,因不同
醣體在生物體中存在其特定生物活性。為了瞭解這些醣體之生物功能,發展出許
多化學或是化學酵素方法來建立直鏈型或是支鏈型醣體。相較於直鏈型醣體,在
合成支鏈型或是不對稱型醣體上更具有挑戰性。因此,發展簡單、具系統性之複
雜寡醣體合成策略 快速取 這些不對稱醣體,有利於研究、了解他們的生物活性。
本論文第一部分探討細菌來源的四種半乳醣基轉移酶 (GalTs) 及一種岩藻
醣基轉移酶 (FucT) 對於各自修飾過受質之反應活性。我們探討在葡萄醣胺上不
同的N-保護基是否會對這些GalTs及FucT有抑制催化之活性。我們順利地發現
一些特定N-保護基能成功的抑制 GalTs及 FucT之催化活性。藉由篩選出來之特
定N-保護基進行選擇性醣基化反應,我們快速地合成出4120a與5130b兩種支
鏈型人類母乳寡醣 (Branched HMOs)。
在第二部份我們合成具有位置選擇性岩藻醣基化之 VIM-2抗原及其類似物。
雖然已經知道 VIM-2抗原是 E-選擇素的結合配體,但尚未有任何文獻研究在不
同位置岩藻醣基化之 VIM-2抗原類似物與 E-選擇素之間的結合關係。因此,我
們使用控制 N-保護基策略來進行選擇性岩藻醣基化。最後,我們也利用此策略
完成七種 VIM-2抗原類似物的建構。我們透過探討這些醣基轉移酶對於不同受
質之容忍度測試,拓展這些酵素對於位置選擇性醣基化之催化能力。期望透過這
些醣基轉移酶對不同受質有不同催化能力之特性,能更進一步應用於合成更複雜
之 N-聚醣 (N-glycans) 或是人類母乳寡醣。
Accessibility of various kinds of diverse oligosaccharides are essential for the studies of functional glycomics and understanding of their unique biological activities in organisms. In order to realize their biological functions, many chemical and chemoenzymatic methods have been developed to synthesize linear and branched glycans. Compared to linear glycans, it is more challenging to synthesize branched or asymmetric glycans. Hence, developing a facile and systematic method to provide these complicated oligosaccharides will facilitate the progress of understanding the biological activities of asymmetric glycans.
In the first part of this research, we focused on the study of the substrate tolerance of four galactosyltransferases (GalTs) and one fucosyltransferase (FucT) from bacteria. The effect of N-protecting group on glucosamine to inhibit the catalytic activities of GalTs and FucT was investigated. Fortunately, we found that some of N-protecting groups can inhibit the activities of GalTs and FucT. With the help of these specific N-protecting groups, we can easily manipulate site-selective glycosylation to synthesize branched HMOs, 4120a and 5130b.
In the second part, we developed an efficient route to synthesize site-selectivily fucosylated VIM-2 antigen and its analogs. Although VIM-2 antigen is a known ligand of E-selectin, there is not many research about the binding affinity between E-selectin and VIM-2 antigen analogs with various fucosylated site(s). Therefore, we utilized the N-protecting group strategy to investigate the site-selective fucosylaiton. Finally, seven site-selective fucosylation VIM-2 antigen analogs were synthesize. The discovery of acceptor tolerance of these glycosyltransferases expands the scope of their use in site-selective glycosylation. These features can be applied to improve the synthetic efficiency of more complicated N-glycans or HMOs.
中文摘要-------------------------------------------------------------I
Abstract-----------------------------------------------------------II
謝誌---------------------------------------------------------------III
縮寫表-----------------------------------------------------------XVIII
酵素縮寫表---------------------------------------------------------XIX
第一章、緒論---------------------------------------------------------1
1.1. 人類母乳寡醣 (HMOs)---------------------------------------------1
1.1.1. 直鏈型人類母乳寡醣 (Linear HMOs)-------------------------------3
1.1.2. 支鏈型人類母乳寡醣 (Branched HMOs)-----------------------------4
1.2. 不對稱支鏈型寡醣合成策略-----------------------------------------6
1.2.1. 應用於不對稱N-聚醣 (N-glycan) 之合成策略-----------------------6
1.2.2. 應用於不對稱HMOs之合成策略------------------------------------12
1.3. 醣激酶與醣基轉移酶----------------------------------------------16
1.3.1. 醣激酶 (NahK、MtGalK、FKP)-----------------------------------18
1.3.2. 磷酸醣核苷轉移酶 (AtUSP、AGX1)--------------------------------22
1.3.3. 胞苷合成酶 (CMP-Sialic acid synthetase, CSS)-----------------25
1.3.4. 醣基轉移酶 (GTs)---------------------------------------------26
1.4. 研究動機-------------------------------------------------------41
第二章、 醣基轉移酶受質容忍度、不對稱HMOs合成之實驗結果與討論-----------42
2.1. 醣基轉移酶受質容忍度測試應用於不對稱支鏈HMOs合成之策略設計---------42
2.2. 大腸桿菌誘導表現目標蛋白----------------------------------------42
2.2.2. 目標蛋白純化系統---------------------------------------------43
2.2.3. 酵素表達之分析-----------------------------------------------47
2.3. β1,3/4-半乳醣基轉移酶 (β1,3/4-GalTs) 對不同N-修飾葡萄醣胺 (GlcNR) 之受質容忍度測試-----------------------------------------------------57
2.3.1. N-修飾葡萄醣胺受質 (GlcNR) 之合成-----------------------------57
2.3.2. β1,3/4-GalTs受質容忍度測試------------------------------------60
2.4. α1,3/4-岩藻醣基轉移酶 (α1,3/4-FucT) 對不同N-修飾乳醣胺 (LacNR) 之受質容忍度測試--------------------------------------------------------67
2.4.1. N-修飾乳醣胺受質 (LacNR) 之合成-------------------------------67
2.4.2. α1,3/4-FucT受質容忍度測試-------------------------------------71
2.5. 不對稱雙支鏈HMOs合成--------------------------------------------75
2.5.1. 不對稱雙支鏈HMOs合成策略設計----------------------------------75
第三章、VIM-2抗原及其類似物醣體分子庫---------------------------------91
3.1. 選擇素 (Selectin)----------------------------------------------91
3.1.1. E-選擇素 (E-selectin)----------------------------------------93
3.2. VIM-2抗原------------------------------------------------------96
3.3. 化學或酵素方法建構VIM-2抗原-------------------------------------97
3.4. 選擇性岩藻醣基化策略--------------------------------------------99
3.5. 研究動機------------------------------------------------------101
第四章、合成VIM-2抗原及其類似物醣體分子之實驗結果與討論----------------102
4.1. 位置選擇岩藻醣基化 (Site-selective fucosylation) 策略合成VIM-2抗原 ------------------------------------------------------------------102
4.2. 叔丁氧羰基 (Boc) 保護基抑制岩藻醣基化之測試----------------------102
4.2.1. 叔丁氧羰基修飾六醣體之合成------------------------------------102
4.2.2. FucTa對不同六醣體選擇性岩藻醣基化之測試-----------------------106
4.3. 合成VIM-2抗原及其類似物醣體分子---------------------------------107
4.3.1. 合成VIM-2抗原類似物51、56與57--------------------------------108
4.3.2. 合成VIM-2抗原類似物52與54------------------------------------129
第五章、結論與未來展望----------------------------------------------150
第六章、實驗材料與方法----------------------------------------------151
6.1. Materials and Methods----------------------------------------151
6.1.1. General information----------------------------------------151
6.1.2. Equipments used in experiments-----------------------------152
6.1.3. Commercially available enzymes-----------------------------153
6.1.4. Vectors----------------------------------------------------154
6.1.5. E. coli strains--------------------------------------------154
6.2. Enzyme overexpression----------------------------------------155
6.2.1. Overexpression of target enzymes---------------------------155
6.3. Investigation of β1,3/4-GalTs acceptor tolerance-------------158
6.4. Investigation of α1,3/4-FucT acceptor tolerance--------------158
6.5. Synthetic procedures and characterization--------------------159
6.5.1. Synthesis of sugar donor-----------------------------------159
6.5.2. Glycosyltransferase-catalyzed reactions and Purification of Enzymatic reaction products---------------------------------------160
6.5.3. Compound characterization----------------------------------163
第七章、參考文獻----------------------------------------------------213
光譜附錄-------------------------------------------------------------i
1. Bode, L., Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162.
2. Jantscher-Krenn, E.; Bode, L., Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr. 2012, 64, 83–99.
3. Picciano, M. F., Nutrient composition of human milk. Pediatr. Clin. North Am. 2001, 48, 53–67.
4. Hennet, T.; Weiss, A.; Borsig, L., Decoding breast milk oligosaccharides. Swiss Med. Wkly. 2014, 144, w13927.
5. Kuntz, S.; Rudloff, S.; Kunz, C., Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br. J. Nutr. 2008, 99, 462–471.
6. Autran, C. A.; Schoterman, M. H.; Jantscher-Krenn, E.; Kamerling, J. P.; Bode, L., Sialylated galacto-oligosaccharides and 2'-fucosyllactose reduce necrotising enterocolitis in neonatal rats. Br. J. Nutr. 2016, 116, 294–299.
7. Triantis, V.; Bode, L.; van Neerven, R. J., Immunological effects of human milk oligosaccharides. Front. Pediatr. 2018, 6, 190.
8. Azad, M. B.; Robertson, B.; Atakora, F.; Becker, A. B.; Subbarao, P.; Moraes, T. J.; Mandhane, P. J.; Turvey, S. E.; Lefebvre, D. L.; Sears, M. R., Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J. Nutr. 2018, 148, 1733–1742.
9. Yatsunenko, T.; Rey, F. E.; Manary, M. J.; Trehan, I.; Dominguez-Bello, M. G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R. N.; Anokhin, A. P., Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227.
10. Newburg, D. S.; Ruiz-Palacios, G. M.; Morrow, A. L., Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005, 25, 37–58.
11. Neu, J.; Walker, W. A., Necrotizing enterocolitis. N. Engl. J. Med. 2011, 364, 255–264.
12. Moore, R. E.; Xu, L. L.; Townsend, S. D., Prospecting human milk oligosaccharides as a defense against viral infections. ACS Infect.Dis. 2021, 7, 254–263.
13. Wang, B.; Yu, B.; Karim, M.; Hu, H.; Sun, Y.; McGreevy, P.; Petocz, P.; Held, S.; Brand-Miller, J., Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 2007, 85, 561–569.
14. Kobata, A., Structures and application of oligosaccharides in human milk. Proc. Jpn. Acad., Ser. B 2010, 86, 731–747.
15. Zhou, R.; Llorente, C.; Cao, J.; Gao, B.; Duan, Y.; Jiang, L.; Wang, Y.; Kumar, V.; Stärkel, P.; Bode, L., Deficiency of Intestinal α1‐2‐Fucosylation Exacerbates Ethanol‐Induced Liver Disease in Mice. Alcohol. Clin. Exp. Res. 2020, 44, 1842–1851.
16. Larsson, M. W.; Lind, M. V.; Laursen, R. P.; Yonemitsu, C.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K. F.; Bode, L., Human milk oligosaccharide composition is associated with excessive weight gain during exclusive breastfeeding—an explorative study. Front. Pediatr. 2019, 7, 297.
17. Cheema, A. S.; Gridneva, Z.; Furst, A. J.; Roman, A. S.; Trevenen, M. L.; Turlach, B. A.; Lai, C. T.; Stinson, L. F.; Bode, L.; Payne, M. S., Human Milk Oligosaccharides and Bacterial Profile Modulate Infant Body Composition during Exclusive Breastfeeding. Int.J. Mol. Sci. 2022, 23, 2865.
18. McGuire, M. K.; Meehan, C. L.; McGuire, M. A.; Williams, J. E.; Foster, J.; Sellen, D. W.; Kamau-Mbuthia, E. W.; Kamundia, E. W.; Mbugua, S.; Moore, S. E., What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 2017, 105, 1086–1100.
19. Ferreira, A. L.; Alves, R.; Figueiredo, A.; Alves-Santos, N.; Freitas-Costa, N.; Batalha, M.; Yonemitsu, C.; Manivong, N.; Furst, A.; Bode, L., Human milk oligosaccharide profile variation throughout postpartum in healthy women in a Brazilian cohort. Nutrients 2020, 12, 790.
20. Wu, R. Y.; Botts, S. R.; Johnson-Henry, K. C.; Landberg, E.; Abrahamsson, T. R.; Sherman, P. M., Variations in the Composition of Human Milk Oligosaccharides Correlates with Effects on Both the Intestinal Epithelial Barrier and Host Inflammation: A Pilot Study. Nutrients 2022, 14, 1014.
21. Goehring, K. C.; Marriage, B. J.; Oliver, J. S.; Wilder, J. A.; Barrett, E. G.; Buck, R. H., Similar to those who are breastfed, infants fed a formula containing 2'-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J. Nutr. 2016, 146, 2559–2566.
22. Kuhn, L.; Kim, H.-Y.; Hsiao, L.; Nissan, C.; Kankasa, C.; Mwiya, M.; Thea, D. M.; Aldrovandi, G. M.; Bode, L., Oligosaccharide composition of breast milk influences survival of uninfected children born to HIV-infected mothers in Lusaka, Zambia. J. Nutr. 2015, 145, 66–72.
23. Bohari, M. H.; Yu, X.; Zick, Y.; Blanchard, H., Structure-based rationale for differential recognition of lacto-and neolacto-series glycosphingolipids by the N-terminal domain of human galectin-8. Sci. Rep. 2016, 6, 39556.
24. Autran, C. A.; Kellman, B. P.; Kim, J. H.; Asztalos, E.; Blood, A. B.; Spence, E. C. H.; Patel, A. L.; Hou, J.; Lewis, N. E.; Bode, L., Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 2018, 67, 1064–1070.
25. Tachibana, Y.; Yamashita, K.; Kobata, A., Oligosaccharides of human milk: Structural studies of di-and trifucosyl derivatives of lacto-N-octaose and lacto-N-neooctaose. Arch. Biochem. Biophys. 1978, 188, 83–89.
26. Strecker, G.; Fievre, S.; Wieruszeski, J.-M.; Michalski, J.-C.; Montreuil, J., Primary structure of four human milk octa-, nona-, and undeca-saccharides established by 1H-and 13C-nuclear magnetic resonance spectroscopy. Carbohydr. Res. 1992, 226, 1–14.
27. Amano, J.; Osanai, M.; Orita, T.; Sugahara, D.; Osumi, K., Structural determination by negative-ion MALDI-QIT-TOFMSn after pyrene derivatization of variously fucosylated oligosaccharides with branched decaose cores from human milk. Glycobiology 2009, 19, 601–614.
28. Wu, S.; Grimm, R.; German, J. B.; Lebrilla, C. B., Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 2011, 10, 856–868.
29. Han, Z.; Chen, C.; Meng, C.; Gao, T.; Peng, P.; Chen, X.; Wang, F.; Cao, H., Chemoenzymatic synthesis of tumor-associated antigen N3 minor octasaccharide. J. Carbohydr. Chem. 2016, 35, 412–422.
30. Lee, J. C.; Wu, C. Y.; Apon, J. V.; Siuzdak, G.; Wong, C. H., Reactivity‐based one‐pot synthesis of the tumor‐associated antigen N3 minor octasaccharide for the development of a photocleavable DIOS‐MS sugar array. Angew. Chem.Int. Ed. 2006, 45, 2753–2757.
31. Kim, H. M.; Kim, I. J.; Danishefsky, S. J., Total syntheses of tumor-related antigens N3: probing the feasibility limits of the glycal assembly method. J. Am. Chem. Soc. 2001, 123, 35–48.
32. Hakomori, S.-I., Tumor-associated carbohydrate antigens. Ann. Rev. Immunol. 1984, 2, 103–126.
33. Kobata, A.; Ginsburg, V., Oligosaccharides of human milk: IV. Isolation and characterization of a new hexasaccharide, lacto-N-neohexaose. Arch. Biochem. Biophys. 1972, 150, 273–281.
34. Craft, K. M.; Townsend, S. D., Synthesis of lacto-N-tetraose. Carbohydr. Res. 2017, 440, 43–50.
35. Routenberg Love, K.; Seeberger, P. H., Automated solid‐phase synthesis of protected tumor‐associated antigen and blood group determinant oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 602–605.
36. Bandara, M. D.; Stine, K. J.; Demchenko, A. V., The chemical synthesis of human milk oligosaccharides: Lacto-N-tetraose (Galβ1→3GlcNAcβ1→3Galβ1→4Glc). Carbohydr. Res. 2019, 486, 107824.
37. Miermont, A.; Zeng, Y.; Jing, Y.; Ye, X.-S.; Huang, X., Syntheses of LewisX and dimeric LewisX: Construction of Branched Oligosaccharides by a Combination of Preactivation and Reactivity Based Chemoselective One-Pot Glycosylations. J. Org. Chem. 2007, 72, 8958–8961.
38. Bai, Y.; Yang, X.; Yu, H.; Chen, X., Substrate and Process Engineering for Biocatalytic Synthesis and Facile Purification of Human Milk Oligosaccharides. ChemSusChem 2022, 15, e202102539.
39. Huang, Y.-T.; Su, Y.-C.; Wu, H.-R.; Huang, H.-H.; Lin, E. C.; Tsai, T.-W.; Tseng, H.-W.; Fang, J.-L.; Yu, C.-C., Sulfo-Fluorous Tagging Strategy for Site-Selective Enzymatic Glycosylation of para-Human Milk Oligosaccharides. ACS Catal. 2021, 11, 2631–2643.
40. Fang, J.-L.; Tsai, T.-W.; Liang, C.-Y.; Li, J.-Y.; Yu, C.-C., Enzymatic synthesis of human milk fucosides α1,2‐Fucosyl para‐Lacto‐N‐Hexaose and its isomeric derivatives. Adv. Synth. Catal. 2018, 360, 3213–3219.
41. McArthur, J. B.; Yu, H.; Chen, X., A bacterial β1–3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catal. 2019, 9, 10721–10726.
42. Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.; McBride, R.; de Vries, R. P.; Glushka, J.; Paulson, J. C.; Boons, G.-J., A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013, 341, 379–383.
43. Li, L.; Liu, Y.; Ma, C.; Qu, J.; Calderon, A. D.; Wu, B.; Wei, N.; Wang, X.; Guo, Y.; Xiao, Z., Efficient chemoenzymatic synthesis of an N-glycan isomer library. Chem. Sci. 2015, 6, 5652–5661.
44. Liu, L.; Prudden, A. R.; Capicciotti, C. J.; Bosman, G. P.; Yang, J.-Y.; Chapla, D. G.; Moremen, K. W.; Boons, G.-J., Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat. Chem. 2019, 11, 161–169.
45. Gagarinov, I. A.; Li, T.; Toraño, J. S.; Caval, T.; Srivastava, A. D.; Kruijtzer, J. A.; Heck, A. J.; Boons, G.-J., Chemoenzymatic Approach for the Preparation of Asymmetric Bi-, Tri-, and Tetra-Antennary N-glycans from a Common Precursor. J. Am. Chem. Soc. 2017, 139, 1011–1018.
46. Srivastava, A. D.; Unione, L.; Bunyatov, M.; Gagarinov, I. A.; Delgado, S.; Abrescia, N. G.; Ardá, A.; Boons, G. -J., Chemoenzymatic Synthesis of Complex N‐Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DC‐SIGN recognition. Angew. Chem. Int. Ed. 2021, 60, 19287–19296.
47. Knuhr, P.; Castro‐Palomino, J.; Grathwohl, M.; Schmidt, R. R., Complex Structures of Antennary Human Milk Oligosaccharides−Synthesis of a Branched Octasaccharide. Eur. J. Org. Chem. 2001, 2001, 4239–4246.
48. Xiao, Z.; Guo, Y.; Liu, Y.; Li, L.; Zhang, Q.; Wen, L.; Wang, X.; Kondengaden, S. M.; Wu, Z.; Zhou, J., Chemoenzymatic synthesis of a library of human milk oligosaccharides. J. Org. Chem. 2016, 81, 5851–5865.
49. Prudden, A. R.; Liu, L.; Capicciotti, C. J.; Wolfert, M. A.; Wang, S.; Gao, Z.; Meng, L.; Moremen, K. W.; Boons, G.-J., Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6954–6959.
50. Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G. L.; Thornton, J. M., Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 2008, 13, 1205–1218.
51. Lairson, L.; Henrissat, B.; Davies, G.; Withers, S., Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555.
52. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-Kinase in the Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444–6449.
53. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433–5435.
54. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chen, W.; Wang, P. G., A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun. 2009, 20, 2944–2946.
55. Holden, H. M.; Rayment, I.; Thoden, J. B., Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885–43888.
56. Timson, D. J.; Reece, R. J., Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes. Biochimie 2002, 84, 265–272.
57. Timson, D. J.; Reece, R. J., Sugar recognition by human galactokinase. BMC Biochem. 2003, 4, 16.
58. Chu, X.; Li, N.; Liu, X.; Li, D., Functional studies of rat galactokinase. J. Biotechnol. 2009, 141, 142–146.
59. Li, S.-P.; Hsiao, W.-C.; Yu, C.-C.; Chien, W.-T.; Lin, H.-J.; Huang, L.-D.; Lin, C.-H.; Wu, W.-L.; Wu, S.-H.; Lin, C.-C., Characterization of Meiothermus taiwanensis Galactokinase and its use in the One‐Pot Enzymatic Synthesis of Uridine Diphosphate‐Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen‐3. Adv. Synth. Catal. 2014, 356, 3199–3213.
60. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human symbionts use a host-like pathway for surface fucosylation. Science 2005, 307, 1778–1781.
61. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P., Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16096–16101.
62. Litterer, L.; Schnurr, J.; Plaisance, K.; Storey, K.; Gronwald, J.; Somers, D., Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant physiol. Biochem. 2006, 44, 171–180.
63. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J., Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP). Bioorg. Med. Chem. Lett. 2013, 23, 3764–3768.
64. Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen, X., Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem. Commun. 2012, 48, 2728–2730.
65. Kotake, T.; Yamaguchi, D.; Ohzono, H.; Hojo, S.; Kaneko, S.; Ishida, H.-K.; Tsumuraya, Y., UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J. Biol. Chem. 2004, 279, 45728–45736.
66. Guo, Y.; Fang, J.; Li, T.; Li, X.; Ma, C.; Wang, X.; Wang, P. G.; Li, L., Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA. Carbohydr. Res. 2015, 411, 1–5.
67. Bourgeaux, V.; Piller, F.; Piller, V., Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg. Med. Chem. Lett. 2005, 15, 5459–5462.
68. Guan, W.; Cai, L.; Wang, P. G., Highly Efficient Synthesis of UDP‐GalNAc/GlcNAc Analogues with Promiscuous Recombinant Human UDP‐GalNAc Pyrophosphorylase AGX1. Chem.–Eur. J. 2010, 16, 13343–13345.
69. Knorst, M.; Fessner, W. D., CMP‐Sialate Synthetase from Neisseria meningitidis−Overexpression and Application to the Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698–710.
70. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP–sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP–sialic acid synthetases. Bioorg. Med. Chem. 2004, 12, 6427–6435.
71. Liu, X.-W.; Xia, C.; Li, L.; Guan, W.-Y.; Pettit, N.; Zhang, H.-C.; Chen, M.; Wang, P. G., Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55: H7. Bioorg. Med. Chem. 2009, 17, 4910–4915.
72. Endo, T.; Koizumi, S.; Tabata, K.; Ozaki, A., Cloning and expression of β1,4-galactosyltransferase gene from Helicobacter pylori. Glycobiology 2000, 10, 809–813.
73. Logan, S.; Conlan, J.; Monteiro, M.; Wakarchuk, W.; Altman, E., Functional genomics of Helicobacter pylori:identification of a β‐1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol. Microbiol. 2000, 35, 1156–1167.
74. Namdjou, D. J.; Chen, H. M.; Vinogradov, E.; Brochu, D.; Withers, S. G.; Wakarchuk, W. W., A β‐1,4‐Galactosyltransferase from Helicobacter pylori is an Efficient and Versatile Biocatalyst Displaying a Novel Activity for Thioglycoside Synthesis. Chembiochem 2008, 9, 1632–1640.
75. Wakarchuk, W.; Martin, A.; Jennings, M. P.; Moxon, E. R.; Richards, J. C., Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. J. Biol. Chem. 1996, 271, 19166–19173.
76. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. Chem. Commun. 2010, 46, 6066–6068.
77. Jennings, M. P.; Hood, D. W.; Peak, I. R.; Virji, M.; Moxon, E. R., Molecular analysis of a locus for the biosynthesis and phase‐variable expression of the lacto‐N‐neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol. Microbiol. 1995, 18, 729–740.
78. Blixt, O.; van Die, I.; Norberg, T.; van den Eijnden, D. H., High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAcβ1→3Gal and GalNAcβ1→3Gal linkages. Glycobiology 1999, 9, 1061–1071.
79. Vasiliu, D.; Razi, N.; Zhang, Y.; Jacobsen, N.; Allin, K.; Liu, X.; Hoffmann, J.; Bohorov, O.; Blixt, O., Large-scale chemoenzymatic synthesis of blood group and tumor-associated poly-N-acetyllactosamine antigens. Carbohydr. Res. 2006, 341, 1447–1457.
80. Logan, S. M.; Altman, E.; Mykytczuk, O.; Brisson, J.-R.; Chandan, V.; Michael, F. S.; Masson, A.; Leclerc, S.; Hiratsuka, K.; Smirnova, N., Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology 2005, 15, 721–733.
81. Sauerzapfe, B.; Křenek, K.; Schmiedel, J.; Wakarchuk, W. W.; Pelantová, H.; Křen, V.; Elling, L., Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconjugate J. 2009, 26, 141–159.
82. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, C.-H.; Li, S.-P.; Primadona, I.; Chen, Y.-J.; Mong, K. K. T.; Lin, C.-C., Sequential one-pot enzymatic synthesis of oligo-N-acetyllactosamine and its multi-sialylated extensions. Chem. Commun. 2014, 50, 5786–5789.
83. Monteiro, M. A.; Chan, K. H.; Rasko, D. A.; Taylor, D. E.; Zheng, P.; Appelmelk, B. J.; Wirth, H.-P.; Yang, M.; Blaser, M. J.; Hynes, S. O., Simultaneous Expression of Type 1 and Type 2 Lewis Blood Group Antigens by Helicobacter pylori Lipopolysaccharides: Molecular mimicry between H. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J. Biol. Chem. 1998, 273, 11533–11543.
84. Rasko, D. A.; Wang, G.; Palcic, M. M.; Taylor, D. E., Cloning and Characterization of the α (1,3/4) Fucosyltransferase of Helicobacter pylori. J. Biol. Chem. 2000, 275, 4988–4994.
85. Yu, H.; Li, Y.; Wu, Z.; Li, L.; Zeng, J.; Zhao, C.; Wu, Y.; Tasnima, N.; Wang, J.; Liu, H., H. pylori α1–3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem. Commun. 2017, 53, 11012–11015.
86. Wang, G.; Rasko, D. A.; Sherburne, R.; Taylor, D. E., Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the α (1, 2) fucosyltransferase gene. Mol. Microbiol. 1999, 31, 1265–1274.
87. Stein, D. B.; Lin, Y. N.; Lin, C. H., Characterization of Helicobacter pylori α1,2‐Fucosyltransferase for Enzymatic Synthesis of Tumor‐Associated Antigens. Adv. Synth. Catal. 2008, 350, 2313–2321.
88. Li, M.; Liu, X.-W.; Shao, J.; Shen, J.; Jia, Q.; Yi, W.; Song, J. K.; Woodward, R.; Chow, C. S.; Wang, P. G., Characterization of a Novel α1,2-Fucosyltransferase of Escherichia coli O128: B12 and Functional Investigation of its Common Motif. Biochemistry 2008, 47, 378–387.
89. Engels, L.; Elling, L., WbgL: a novel bacterial α1,2-fucosyltransferase for the synthesis of 2'-fucosyllactose. Glycobiology 2014, 24, 170–178.
90. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of Ganglioside mimics in Campylobacter jejuni OH4384: Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J. Biol. Chem. 2000, 275, 3896–3906.
91. Morley, T. J.; Withers, S. G., Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J. Am. Chem. Soc. 2010, 132, 9430–9437.
92. Li, P.-J.; Huang, S.-Y.; Chiang, P.-Y.; Fan, C.-Y.; Guo, L.-J.; Wu, D.-Y.; Angata, T.; Lin, C.-C., Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo‐series Glycans. Angew. Chem. Int. Ed. 2019, 58, 11273–11278.
93. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618–17619.
94. Sugiarto, G.; Lau, K.; Li, Y.; Khedri, Z.; Yu, H.; Le, D.-T.; Chen, X., Decreasing the sialidase activity of multifunctional Pasteurella multocida α2–3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Mol. BioSyst. 2011, 7, 3021–3027.
95. Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X., A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating LewisX. ACS Chem. Biol. 2012, 7, 1232–1240.
96. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I., A novel α-2,6-sialyltransferase: transfer of sialic acid to fucosyl and sialyl trisaccharides. J. Org. Chem. 1996, 61, 8632–8635.
97. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 Produces Two Sialyltransferases, α-/β-Galactoside α2,3-Sialyltransferase and β-Galactoside α2,6-Sialyltransferase. J. Biochem. 2008, 143, 187–197.
98. McArthur, J. B.; Yu, H.; Zeng, J.; Chen, X., Converting Pasteurella multocida α2–3-sialyltransferase 1 (PmST1) to a regioselective α2–6-sialyltransferase by saturation mutagenesis and regioselective screening. Org. Biomol. Chem. 2017, 15, 1700–1709.
99. Joosten, J. A.; Kamerling, J. P.; Vliegenthart, J. F., Chemo-enzymatic synthesis of a tetra-and octasaccharide fragment of the capsular polysaccharide of Streptococcus pneumoniae type 14. Carbohydr. Res. 2003, 338, 2611–2627.
100. Goddard-Borger, E. D.; Stick, R. V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 2007, 9, 3797–3800.
101. Wuerthner, F., DMF in acetic anhydride: A useful reagent for multiple-component syntheses of merocyanine dyes. Synthesis 1999, 12, 2103–2113.
102. Dekany, G.; Bornaghi, L.; Papageorgiou, J.; Taylor, S., A novel amino protecting group: DTPM. Tetrahedron Lett. 2001, 42, 3129–3132.
103. Gudmundsdottir, A. V.; Nitz, M., Protecting Group Free Glycosidations Using p-Toluenesulfonohydrazide Donors. Org. Lett. 2008, 10, 3461–3463.
104. Arungundram, S.; Al-Mafraji, K.; Asong, J.; Leach III, F. E.; Amster, I. J.; Venot, A.; Turnbull, J. E.; Boons, G.-J., Modular synthesis of heparan sulfate oligosaccharides for structure−activity relationship studies. J. Am. Chem. Soc. 2009, 131, 17394–17405.
105. Ye, J.; Xia, H.; Sun, N.; Liu, C.-C.; Sheng, A.; Chi, L.; Liu, X.-W.; Gu, G.; Wang, S.-Q.; Zhao, J., Reprogramming the enzymatic assembly line for site-specific fucosylation. Nat. Catal. 2019, 2, 514–522.
106. Kansas, G. S., Selectins and their ligands: current concepts and controversies. Blood 1996, 88, 3259–3287.
107. Kannagi, R.; Izawa, M.; Koike, T.; Miyazaki, K.; Kimura, N., Carbohydrate‐mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004, 95, 377–384.
108. Vestweber, D.; Blanks, J. E., Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 1999, 79, 181–213.
109. Hu, Y.; Kiely, J.-M.; Szente, B. E.; Rosenzweig, A.; Gimbrone, M. A., E-selectin-dependent signaling via the mitogen-activated protein kinase pathway in vascular endothelial cells. J. Immunol. 2000, 165, 2142–2148.
110. Tremblay, P.; Auger, F.; Huot, J., Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene 2006, 25, 6563–6573.
111. Mitoma, J.; Fukuda, M., Core O-Glycans Required for Lymphocyte Homing: Gene Knockout Mice of Core 1 β1,3-N-Acetylglucosaminyltransferase and Core 2 N-Acetylglucosaminyltransferase. Methods Enzymol. 2010; 479, 257–270.
112. Galustian, C.; Lawson, A. M.; Komba, S.; Ishida, H.; Kiso, M.; Feizi, T., Sialyl-LewisX Sequence 6-O-Sulfated at N-Acetylglucosamine Rather Than at Galactose Is the Preferred Ligand for L-Selectin and De-N-acetylation of the Sialic Acid Enhances the Binding Strength. Biochem. Biophys. Res. Commun. 1997, 240, 748–751.
113. Krishnamurthy, V. R.; Sardar, M. Y.; Ying, Y.; Song, X.; Haller, C.; Dai, E.; Wang, X.; Hanjaya-Putra, D.; Sun, L.; Morikis, V., Glycopeptide analogues of PSGL-1 inhibit P-selectin in vitro and in vivo. Nat. Commun. 2015, 6, 6387.
114. Kawashima, H.; Hirose, M.; Hirose, J.; Nagakubo, D.; Plaas, A. H.; Miyasaka, M., Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 2000, 275, 35448–35456.
115. Yago, T.; Fu, J.; McDaniel, J. M.; Miner, J. J.; McEver, R. P.; Xia, L., Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 9204–9209.
116. Bird, M.; Foster, M.; Priest, R.; Malhotra, R., Selectins: physiological and pathophysiological roles. Biochem. Soc. Trans. 1997, 25, 1199–1206.
117. Silva, M.; Videira, P. A.; Sackstein, R., E-selectin ligands in the human mononuclear phagocyte system: implications for infection, inflammation, and immunotherapy. Front. Immunol. 2018, 8, 1878.
118. Brodt, P.; Fallavollita, L.; Bresalier, R. S.; Meterissian, S.; Norton, C. R.; Wolitzky, B. A., Liver endothelial E‐selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int. J. Cancer 1997, 71, 612–619.
119. Witz, I. P., The involvement of selectins and their ligands in tumor-progression. Immunol. Lett. 2006, 104, 89–93.
120. Varki, A., Selectin ligands. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 7390–7397.
121. Nimrichter, L.; Burdick, M. M.; Aoki, K.; Laroy, W.; Fierro, M. A.; Hudson, S. A.; Von Seggern, C. E.; Cotter, R. J.; Bochner, B. S.; Tiemeyer, M., E-selectin receptors on human leukocytes. Blood 2008, 112, 3744–3752.
122. Uemura, K.-I.; Macher, B. A.; DeGregorio, M.; Scudder, P.; Buehler, J.; Knapp, W.; Feizi, T., Glycosphingolipid carriers of carbohydrate antigens of human myeloid cells recognized by monoclonal antibodies. Biochim. Biophys. Acta 1985, 846, 26–36.
123. Macher, B.; Buehler, J.; Scudder, P.; Knapp, W.; Feizi, T., A novel carbohydrate, differentiation antigen on fucogangliosides of human myeloid cells recognized by monoclonal antibody VIM-2. J. Biol. Chem. 1988, 263, 10186–10191.
124. Tiemeyer, M.; Swiedler, S. J.; Ishihara, M.; Moreland, M.; Schweingruber, H.; Hirtzer, P.; Brandley, B. K., Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1138–1142.
125. Stroud, M. R.; Handa, K.; Salyan, M. E. K.; Ito, K.; Levery, S. B.; Hakomori, S.-I.; Reinhold, B. B.; Reinhold, V. N., Monosialogangliosides of Human Myelogenous Leukemia HL60 Cells and Normal Numan Leukocytes. 1. Separation of E-selectin Binding from Nonbinding Gangliosides, and Absence of Sialosyl-LeX Having Tetraosyl to Octaosyl Core. Biochemistry 1996, 35, 758–769.
126. Stroud, M. R.; Handa, K.; Salyan, M. E. K.; Ito, K.; Levery, S. B.; Hakomori, S.-I.; Reinhold, B. B.; Reinhold, V. N., Monosialogangliosides of Human Myelogenous Leukemia HL60 Cells and Normal Human Leukocytes. 2. Characterization of E-selectin Binding Fractions, and Structural Requirements for Physiological Binding to E-selectin. Biochemistry 1996, 35, 770–778.
127. Ehara, T.; Kameyama, A.; Yamada, Y.; Ishida, H.; Kiso, M.; Hasegawa, A., Total synthesis of VIM-2 ganglioside isolated from human chronic myelogenous leukemia cells. Carbohydr. Res. 1996, 281, 237–252.
128. Räbinä, J.; Natunen, J.; Niemelä, R.; Salminen, H.; Ilves, K.; Aitio, O.; Maaheimo, H.; Helin, J.; Renkonen, O., Enzymatic synthesis of site-specifically (α1–3)-fucosylated polylactosamines containing either a sialyl Lewis x, a VIM-2, or a sialylated and internally difucosylated sequence. Carbohydr. Res. 1997, 305, 491–499.
129. Gagarinov, I. A.; Li, T.; Wei, N.; Sastre Toraño, J.; de Vries, R. P.; Wolfert, M. A.; Boons, G. J., Protecting‐Group‐Controlled Enzymatic Glycosylation of Oligo‐N‐Acetyllactosamine Derivatives. Angew. Chem. Int. Ed. 2019, 58, 10547–10552.
130. Chen, C.; Wang, S.; Gadi, M. R.; Zhu, H.; Liu, F.; Liu, C.-C.; Li, L.; Wang, F.; Ling, P.; Cao, H., Enzymatic modular synthesis and microarray assay of poly-N-acetyllactosamine derivatives. Chem. Commun. 2020, 56, 7549–7552.
131. Wang, A.; Hendel, J.; Auzanneau, F.-I., Convergent syntheses of LeX analogues. Beilstein J. Org. Chem. 2010, 6, 17.
132. Yamatani, K.; Kawatani, R.; Ajiro, H., Synthesis of glucosamine derivative with double caffeic acid moieties at N–and 6-O-positions for developments of natural based materials. J. Mol. Struct. 2020, 1206, 127689.

(此全文20270808後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *