帳號:guest(3.133.136.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂承宗
作者(外文):Lu, Cheng-Zong
論文名稱(中文):以紫外可見吸收光譜法搭配數值方法探討甲二醇與亞硝酸鹽混合水溶液之光解反應機構及反應動力學
論文名稱(外文):Reaction Mechanism and Chemical Kinetics of Photolysis of Aqueous Nitrite in Presence of Methanediol Monitored by UV/Vis Spectroscopy and Analyzed with Numerical Method
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):張元賓
余慈顏
口試委員(外文):Chang, Yuan-Pin
Yu, Tsyr-Yan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:109023510
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:107
中文關鍵詞:甲二醇亞硝酸鈉光解反應化學動力學數值模擬紫外可見吸收光譜法
外文關鍵詞:MethanediolNitritePhotolysis reactionChemical kineticsNumerical simulationUV/Vis absorption spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:296
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
大氣中的雲滴可能同時存在亞硝酸根及甲二醇。當亞硝酸根光解後將產生氫氧自由基及一氧化氮自由基並可能與甲二醇反應,然而目前並未有相關文獻詳細探討雲滴或水溶液中同時含有氫氧自由基、一氧化氮自由基及甲二醇之反應動力學。於本研究中,吾人係以原處(in situ)及即時(on time)之穩態紫外/可見吸收光譜法探討甲二醇/亞硝酸鈉混合水溶液受365 nm發光二極體激發後,亞硝酸根受光激發產生之氫氧自由基及一氧化氮自由基與甲二醇之反應機制和動力學。以365 nm激發樣品後,吾人觀察到300−390 nm屬於亞硝酸根受光解消逝之吸收譜帶,及在250−275 nm時間前期屬於水合甲醛自由基(hydrated formyl radical, CH(OH)2)及時間後期包含二氧化碳自由基陰離子(carbon dioxide radical anion, CO2- )及NOCO2-之生成吸收譜帶。結合鄭巧彌同學之拉曼光譜實驗結果、趙源鈞同學之理論計算結果及吾人數值模擬建構亞硝酸根光解後與甲二醇反應之反應機構及動力學資訊,所模擬上述各物種濃度之時間側寫與實驗一致。其中CH(OH)2+NO -> HCOOH + HNO為一重要但未被提出過的反應路徑,其反應速率常數為 ,以及長生命期(半生期約為333 秒)的中間產物水合甲醛自由基(CH(OH)2)。和以往僅能透過偵測最終產物間接推測反應機構的方法相比,例如層析法,吾人於本研究以原處及即時的光譜技術,將有助於更完整建立光化學反應機構及相關動力學。而吾人於本研究中成功建立甲二醇/亞硝酸鈉混合水溶液之光反應機制及各步速率常數,將有助於了解若兩者同時存在於水溶液或雲滴中所扮演的角色。
The nitrite (NO2- ) and methanediol (CH2(OH)2) could exist simultaneously in the cloud droplet or aqueous aerosols. Under ultraviolet irradiation, short-lived radicals, e.g., hydroxyl radical (OH) and nitric oxide (NO), via the photolysis of nitrite, could react with methanediol. Nevertheless, there have been no detailed researches on the reaction kinetics between hydroxyl radical, nitric oxide, and methanediol in cloud droplet or aqueous solution. In this work, the reaction mechanism and kinetics of nitrite aqueous solution containing varied amounts of methanediol upon continuous exposure was studied by steady-state UV/Vis spectroscopy. Upon the continuous irradiation of the mixture containing sodium nitrite and methanediol with 365 nm light from a LED, a decay band at 300−390 nm could be attributed to the photolysis of nitrite, and the formation band at 250−275 nm could be attributed to long-lived hydrated formyl radical(CH(OH)2) in the early period and carbon dioxide anion(CO2-) and NOCO2- in the later period, respectively. Based on the Raman spectra from Cheng, theoretical calculation results from Jhao, and numerical analyses in my work, the mechanism and the corresponding kinetic properties of photolysis reaction of nitrite aqueous solution containing methanediol has been thoroughly discussed. The simulated concentrations of aforementioned species were consistent with our experimental results. Furthermore, we also proposed an unrevealed reaction pathway,CH(OH)2+NO -> HCOOH + HNO , with a bimolecular reaction coefficient of 1.0x10^2 M-1s-1 . In addition, hydrated formyl radical was proposed to be a long-lived intermediate, with the half-life of ca. 300 sec. Compared with the conventional methods by detecting the reaction end products, e.g., chromatography, we used UV/Vis spectroscopy to in situ and on time monitor the photochemical reactions, benefitting the establishment of reaction mechanism and kinetics. Furthermore, understanding the reaction mechanism and the related reaction rate coefficients of the photolysis reaction of nitrite aqueous solution containing methanediol helps us understand the roles of nitrite and methanediol simultaneously existing in aqueous solution or in cloud droplet.

第一章 緒論 1
1.1 雲滴對於大氣之重要性 1
1.1.1 雲滴來源及組成 1
1.1.2 雲滴提供之反應環境 1
1.2 大氣中亞硝酸根之重要性 2
1.2.1 亞硝酸根之來源 2
1.2.2 亞硝酸根之光解反應及後續相關反應 2
1.2.3 氫氧自由基與一氧化氮自由基之重要性及氧化反應 4
1.3 大氣中甲二醇之重要性 5
1.3.1 甲二醇之來源 5
1.3.2 甲二醇之聚合反應 6
1.3.3 甲二醇之氧化反應 6
1.4 研究動機 7
第二章 光譜技術原理、實驗系統及樣品溶液製備 24
2.1 穩態紫外/可見光吸收光譜法 24
2.1.1 紫外/可見光吸收光譜法原理 24
2.1.2 實驗系統架設 27
2.1.3 發光二極體激發系統 28
2.1.4 實驗步驟 28
2.2 離子層析法 28
2.2.2 薄膜抑制器 29
2.2.3 實驗步驟 30
2.3 儀器參數設定 31
2.3.1 紫外/可見吸收光譜 31
2.3.2 離子層析儀 31
2.4 樣品溶液製備 32
2.4.1 甲二醇水溶液 32
2.4.2 亞硝酸鈉水溶液 33
2.4.3 甲二醇/亞硝酸鈉混合水溶液 33
2.4.4 甲醇/亞硝酸鈉混合水溶液 33
2.4.5 甲酸鈉/亞硝酸鈉混合水溶液 34
2.4.6 鹽酸水溶液 34
2.4.7 氫氧化鈉水溶液 34
2.4.8 pH=7之甲酸鈉水溶液 34
2.4.9 pH=7之亞硝酸鈉水溶液 34
2.4.10 pH=7之草酸根水溶液 35
2.4.11 液態氮/酒精混合溶液 35
2.4.12 一氧化二氮水溶液 35
第三章 以MATLAB軟體建構動力學模擬與分析 46
3.1 MATLAB軟體簡介與其於化學動力學上的應用 46
3.2 常微分方程式之函式庫 47
3.2.1 ode45函式庫 47
3.2.2 ode15s函式庫 48
3.3 運算流程 48
3.3.1 Formula 49
3.3.2 Simulation 50
第四章 結果與討論 55
4.1 各樣品光解前之穩態紫外/可見光吸收光譜 55
4.2 亞硝酸鈉水溶液之光解反應 56
4.3 甲二醇/亞硝酸鈉混合水溶液之光解反應 57
4.3.1 反應機構 57
4.3.2 以離子層析法確認光解甲二醇/亞硝酸鈉混合水溶液之各物種濃度 59
4.3.3 以紫外/可見吸收光譜法探討甲二醇/亞硝酸鈉混合水溶液之光解反應 60
4.3.3.1 時間前期於255 nm之未知物種 61
4.3.3.2 時間後期於255 nm之未知物種 63
4.3.3.3激發光強度對於樣品光解反應之影響 64
4.4 動力學分析 64
4.4.1 亞硝酸根水溶液之光解速率 65
4.4.2 模擬甲二醇/亞硝酸鈉66.7 mM/99.3 mM混合水溶液光解反應 66
4.4.3 各物種時間側寫與模擬結果之比較 67
4.4.3.1 亞硝酸根時間側寫 67
4.4.3.2 水合甲醛自由基時間側寫 67
4.4.3.3 與二氧化碳自由基陰離子時間側寫 68
第五章 結論 101
附錄一 3.3.1節使用之Formula檔 A-1
附錄二 3.3.2節使用之Simulation檔 A-2
附錄三 4.4節使用之Formula檔 A-3
附錄四 4.4節使用之Simulation檔 A-6
第一章[
1] Grabowski, W. W.; Wang, L.-P. Growth of Cloud Droplets in a Turbulent Environment. Annu. Rev. Fluid Mech. 2013, 45, 293-324.
[2] Miles, N.; Verlinde, J.; Clothiaux, E. Cloud Droplet Size Distributions in Low-Level Stratiform Clouds. J. Atmos. Sci. 2000, 57, 295-311.
[3] Monteith, J. L.; Unsworth, M. H., Chapter 5 - Radiation Environment. In Principles of Environmental Physics (Fourth Edition), Monteith, J. L.; Unsworth, M. H., Eds. Academic Press: Boston, 2013; pp 49-79.
[4] Hudson, J. G.; Noble, S.; Jha, V. On the Relative Role of Sea Salt Cloud Condensation Nuclei (CCN). J. Atmos. Chem. 2011, 68, 71-88.
[5] Sun, J.; Ariya, P. A. Atmospheric Organic and Bio-Aerosols as Cloud Condensation Nuclei (CCN): A Review. Atmos. Environ. 2006, 40, 795-820.
[6] Li, J.; Wang, X.; Chen, J.; Zhu, C.; Li, W.; Li, C.; Liu, L.; Xu, C.; Wen, L.; Xue, L.; Wang, W.; Ding, A.; Herrmann, H. Chemical Composition and Droplet Size Distribution of Cloud at the Summit of Mount Tai, China. Atmos. Chem. Phys. 2017, 17, 9885-9896.
[7] Zhong, J.; Kumar, M.; Francisco, J. S.; Zeng, X. C. Insight into Chemistry on Cloud/Aerosol Water Surfaces. Acc. Chem. Res. 2018, 51, 1229-1237.
[8] Ervens, B.; Sorooshian, A.; Lim, Y. B.; Turpin, B. J. Key Parameters Controlling Oh-Initiated Formation of Secondary Organic Aerosol in the Aqueous Phase (aqSOA). J. Geophys. Res. Atmos. 2014, 119, 3997-4016.
[9] McNeill, V. F. Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols. Environ. Sci. Technol. 2015, 49, 1237-1244.
[10] Bianco, A.; Passananti, M.; Brigante, M.; Mailhot, G. Photochemistry of the Cloud Aqueous Phase: A Review. Molecules. 2020, 25.
[11] Su, H.; Cheng, Y.; Oswald, R.; Behrendt, T.; Trebs, I.; Meixner Franz, X.; Andreae Meinrat, O.; Cheng, P.; Zhang, Y.; Pöschl, U. Soil Nitrite as a Source of Atmospheric Hono and Oh Radicals. Science. 2011, 333, 1616-1618.
[12] Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Addition and Correction to Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2018, 118, 2296-2296.
[13] Van Cleemput, O.; Samater, A. H. Nitrite in Soils: Accumulation and Role in the Formation of Gaseous N Compounds. Fertil. Res. 1995, 45, 81-89.
[14] Buchanan, R. L.; Stahl, H. G.; Whiting, R. C. Effects and Interactions of Temperature, Ph, Atmosphere, Sodium Chloride, and Sodium Nitrite on the Growth of Listeria Monocytogenes. J. Food Prot. 1989, 52, 844-851.
[15] Amundson, R. G.; Maclean, D. C., Influence of Oxides of Nitrogen on Crop Growth and Yield: An Overview. In Studies in Environmental Science, Schneider, T.; Grant, L., Eds. Elsevier: 1982; Vol. 21, pp 501-510.
[16] Acker, K.; Beysens, D.; Möller, D. Nitrite in Dew, Fog, Cloud and Rain Water: An Indicator for Heterogeneous Processes on Surfaces. Atmos. Res 2008, 87, 200-212.
[17] Canfield Donald, E.; Glazer Alexander, N.; Falkowski Paul, G. The Evolution and Future of Earth’s Nitrogen Cycle. Science. 2010, 330, 192-196.
[18] Pajares, S.; Bohannan, B. J. M. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front. Microbiol. 2016, 7.
[19] Wang, L.; Wen, L.; Xu, C.; Chen, J.; Wang, X.; Yang, L.; Wang, W.; Yang, X.; Sui, X.; Yao, L.; Zhang, Q. HONO and Its Potential Source Particulate Nitrite at an Urban Site in North China During the Cold Season. Sci. Total Environ. 2015, 538, 93-101.
[20] Benedict, K. B.; McFall, A. S.; Anastasio, C. Quantum Yield of Nitrite from the Photolysis of Aqueous Nitrate above 300 nm. Environ. Sci. Technol. 2017, 51, 4387-4395.
[21] Strickler, S. J.; Kasha, M. Solvent Effects on the Electronic Absorption Spectrum of Nitrite Ion. J. Am. Chem. Soc. 1963, 85, 2899-2901.
[22] Chu, L.; Anastasio, C. Temperature and Wavelength Dependence of Nitrite Photolysis in Frozen and Aqueous Solutions. Environ. Sci. Technol. 2007, 41, 3626-3632.
[23] Reszka, K. J.; Bilski, P.; Chignell, C. F. EPR and Spin Trapping Investigations of Nitric Oxide (•NO) from UV Irradiated Nitrite Anions in Alkaline Aqueous Solutions. J. Am. Chem. Soc. 1996, 118, 8719-8720.
[24] Mack, J.; Bolton, J. R. Photochemistry of Nitrite and Nitrate in Aqueous Solution: A Review. J. Photochem. Photobiol. A: Chem. 1999, 128, 1-13.
[25] Fischer, M.; Warneck, P. Photodecomposition of Nitrite and Undissociated Nitrous Acid in Aqueous Solution. J. Phys. Chem. 1996, 100, 18749-18756.
[26] Merényi, G.; Lind, J.; Goldstein, S.; Czapski, G. Mechanism and Thermochemistry of Peroxynitrite Decomposition in Water. J. Phys. Chem. A. 1999, 103, 5685-5691.
[27] Seddon, W. A.; Fletcher, J. W.; Sopchyshyn, F. C. Pulse Radiolysis of Nitric Oxide in Aqueous Solution. Can. J. Chem. 1973, 51, 1123-1130.
[28] da Silva, G.; Kennedy, E. M.; Dlugogorski, B. Z. Ab Initio Procedure for Aqueous-Phase Pka Calculation:  The Acidity of Nitrous Acid. J. Phys. Chem. A. 2006, 110, 11371-11376.
[29] Chen, G.; Hanukovich, S.; Chebeir, M.; Christopher, P.; Liu, H. Nitrate Removal Via a Formate Radical-Induced Photochemical Process. Environ. Sci. Technol. 2019, 53, 316-324.
[30] Goldstein, S.; Czapski, G. Mechanism of the Nitrosation of Thiols and Amines by Oxygenated •NO Solutions:  The Nature of the Nitrosating Intermediates. J. Am. Chem. Soc. 1996, 118, 3419-3425.
[31] Gonzalez, M. C.; Braun, A. M. Vuv Photolysis of Aqueous Solutions of Nitrate and Nitrite. Res. Chem. Intermed. 1995, 21, 837-859.
[32] Gonzalez, M. G.; Oliveros, E.; Wörner, M.; Braun, A. M. Vacuum-Ultraviolet Photolysis of Aqueous Reaction Systems. J. Photochem. Photobiol. C: Photochem. Rev. 2004, 5, 225-246.
[33] Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2015, 115, 13051-13092.
[34] Willson, R. L.; Greenstock, C. L.; Adams, G. E.; Wageman, R.; Dorfman, L. M. The Standardization of Hydroxyl Radical Rate Data from Radiation Chemistry. Int. J. Radiat. Phys. Chem. 1971, 3, 211-220.
[35] Monod, A.; Chebbi, A.; Durand-Jolibois, R.; Carlier, P. Oxidation of Methanol by Hydroxyl Radicals in Aqueous Solution under Simulated Cloud Droplet Conditions. Atmos. Environ. 2000, 34, 5283-5294.
[36] Frost, M. J.; Sharkey, P.; Smith, I. W. M. Energy and Structure of the Transition States in the Reaction OH + CO → H + CO2. Faraday Discuss. Chem. Soc. 1991, 91, 305-317.
[37] Bozem, H.; Butler, T. M.; Lawrence, M. G.; Harder, H.; Martinez, M.; Kubistin, D.; Lelieveld, J.; Fischer, H. Chemical Processes Related to Net Ozone Tendencies in the Free Troposphere. Atmos. Chem. Phys. 2017, 17, 10565-10582.
[38] Schwartz Stephen, E. Acid Deposition: Unraveling a Regional Phenomenon. Science. 1989, 243, 753-763.
[39] Littlejohn, D.; Hu, K. Y.; Chang, S. G. Kinetics of the Reaction of Nitric Oxide with Sulfite and Bisulfite Ions in Aqueous Solution. Inorg. Chem. 1986, 25, 3131-3135.
[40] Czapski, G.; Holcman, J.; Bielski, B. H. J. Reactivity of Nitric Oxide with Simple Short-Lived Radicals in Aqueous Solutions. J. Am. Chem. Soc. 1994, 116, 11465-11469.
[41] Chaliyakunnel, S.; Millet, D. B.; Wells, K. C.; Cady-Pereira, K. E.; Shephard, M. W. A Large Underestimate of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements. Environ. Sci. Technol. 2016, 50, 5631-5640.
[42] Franco, B.; Blumenstock, T.; Cho, C.; Clarisse, L.; Clerbaux, C.; Coheur, P. F.; De Mazière, M.; De Smedt, I.; Dorn, H. P.; Emmerichs, T.; Fuchs, H.; Gkatzelis, G.; Griffith, D. W. T.; Gromov, S.; Hannigan, J. W.; Hase, F.; Hohaus, T.; Jones, N.; Kerkweg, A.; Kiendler-Scharr, A.; Lutsch, E.; Mahieu, E.; Novelli, A.; Ortega, I.; Paton-Walsh, C.; Pommier, M.; Pozzer, A.; Reimer, D.; Rosanka, S.; Sander, R.; Schneider, M.; Strong, K.; Tillmann, R.; Van Roozendael, M.; Vereecken, L.; Vigouroux, C.; Wahner, A.; Taraborrelli, D. Ubiquitous Atmospheric Production of Organic Acids Mediated by Cloud Droplets. Nature. 2021, 593, 233-237.
[43] Chameides, W. L.; Davis, D. D. Aqueous-Phase Source of Formic Acid in Clouds. Nature. 1983, 304, 427-429.
[44] Chebbi, A.; Carlier, P. Carboxylic Acids in the Troposphere, Occurrence, Sources, and Sinks: A Review. Atmos. Environ. 1996, 30, 4233-4249.
[45] Jacob, D. J. Chemistry of Oh in Remote Clouds and Its Role in the Production of Formic Acid and Peroxymonosulfate. J. Geophys. Res. Atmos. 1986, 91, 9807-9826.
[46] Toda, K.; Yunoki, S.; Yanaga, A.; Takeuchi, M.; Ohira, S.-I.; Dasgupta, P. K. Formaldehyde Content of Atmospheric Aerosol. Environ. Sci. Technol. 2014, 48, 6636-6643.
[47] Lee, M.; Heikes, B. G.; Jacob, D. J.; Sachse, G.; Anderson, B. Hydrogen Peroxide, Organic Hydroperoxide, and Formaldehyde as Primary Pollutants from Biomass Burning. J. Geophys. Res. Atmos. 1997, 102, 1301-1309.
[48] Luecken, D. J.; Hutzell, W. T.; Strum, M. L.; Pouliot, G. A. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling. Atmos. Environ. 2012, 47, 477-490.
[49] Su, W.; Liu, C.; Hu, Q.; Zhao, S.; Sun, Y.; Wang, W.; Zhu, Y.; Liu, J.; Kim, J. Primary and Secondary Sources of Ambient Formaldehyde in the Yangtze River Delta Based on Ozone Mapping and Profiler Suite (OMPS) Observations. Atmos. Chem. Phys. 2019, 19, 6717-6736.
[50] Sander, R. Compilation of Henry's Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399-4981.
[51] Winkelman, J. G. M.; Voorwinde, O. K.; Ottens, M.; Beenackers, A. A. C. M.; Janssen, L. P. B. M. Kinetics and Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci. 2002, 57, 4067-4076.
[52] Zavitsas, A. A.; Coffiner, M.; Wiseman, T.; Zavitsas, L. R. Reversible Hydration of Formaldehyde. Thermodynamic Parameters. J. Phys. Chem. 1970, 74, 2746-2750.
[53] Lebrun, N.; Dhamelincourt, P.; Focsa, C.; Chazallon, B.; Destombes, J. L.; Prevost, D. Raman Analysis of Formaldehyde Aqueous Solutions as a Function of Concentration. J. Raman Spectrosc. 2003, 34, 459-464.
[54] Guimarães, J. R.; Turato Farah, C. R.; Maniero, M. G.; Fadini, P. S. Degradation of Formaldehyde by Advanced Oxidation Processes. Journal of Environmental Management 2012, 107, 96-101.
[55] Barakoti, K. K.; Subedi, P.; Chalyavi, F.; Gutierrez-Portocarrero, S.; Tucker, M. J.; Alpuche-Aviles, M. A. Formaldehyde Analysis in Non-Aqueous Methanol Solutions by Infrared Spectroscopy and Electrospray Ionization. Front. Chem. 2021, 9: 678112.
[56] Gaca, K. Z.; Parkinson, J. A.; Lue, L.; Sefcik, J. Equilibrium Speciation in Moderately Concentrated Formaldehyde–Methanol–Water Solutions Investigated Using 13c and 1h Nuclear Magnetic Resonance Spectroscopy. Ind. Eng. Chem. Res. 2014, 53, 9262-9271.
[57] Le Botlan, D. J.; Mechin, B. G.; Martin, G. J. Proton and Carbon-13 Nuclear Magnetic Resonance Spectrometry of Formaldehyde in Water. Anal. Chem. 1983, 55, 587-591.
[58] McElroy, W. J.; Waygood, S. J. Oxidation of Formaldehyde by the Hydroxyl Radical in Aqueous Solution. J. Chem. Soc., Faraday Trans. 1991, 87, 1513-1521.
[59] Keen, O. S.; Love, N. G.; Linden, K. G., 10 - Nitrate Photochemistry in the Context of Water Reclamation. In Water Reclamation and Sustainability, Ahuja, S., Ed. Elsevier: Boston, 2014; pp 229-246.
[60] Zellner, R.; Exner, M.; Herrmann, H. Absolute OH Quantum Yields in the Laser Photolysis of Nitrate, Nitrite and Dissolved H2¬O2 at 308 and 351 nm in the Temperature Range 278–353 K. J. Atmos. Chem. 1990, 10, 411-425.
[61] Zafiriou, O. C.; Bonneau, R. Wavelength-Dependent Quantum Yield of OH Radical Formation from Photolysis of Nitrite Ion in Water. Photochem. Photobiol. 1987, 45, 723-727.
第二章
[1] Schatz, G. C.; Ratner, M. A. Quantum Mechanics in Chemistry; Dover Publications, 2002.
[2] Condon, E. U. Nuclear Motion Associated with Electron Transitions in Diatomic Molecules. Phys. Rev. 1928, 32, 858-872.
[3] Winkelman, J. G. M.; Voorwinde, O. K.; Ottens, M.; Beenackers, A. A. C. M.; Janssen, L. P. B. M. Kinetics and Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci., 2002, 57 , 4067-4076.
[4] Roundeau, R. E. Slush Baths. J. Chem. Eng. Data. 1966, 11, 124.
[5] Faust, B. Modern Chemical Techniques: An Essential Reference for Students and. Teachers. Royal Society of Chemistry, 1997, 92-115.
[6] Franck−Condon Principle.
https://en.wikipedia.org/wiki/Franck–Condon_principle (accessed 2022-05-09)
[7] USB4000 Fiber Optic Spectrometer: Installation and Operation Manual; Dunedin, FL: Ocean Optics, Inc., 2008, pp 17-23.
[8] Dionex Integrion HPIC System Operator’s Manual; Thermo Scientific., 2016, pp. 40.
[9] Dionex Integrion HPIC System Operator’s Manual, Thermo Scientific., 2016, pp. 28.
[10] Dionex DRS 600 Suppressor Dionex ERS 500e Suppressor Dionex ERS 500. Carbonate Suppressor, Thermo Scientific., 2021, pp 14.
[11] Harvey, D. Modern Analytical Chemistry; McGraw-Hill, 2000.
[12] Le Botlan, D. J.; Mechln, B. G.; Martin, G. J. Proton and Carbon-13 Nuclear Magnetic Resonance Spectrometry of Formaldehyde in Water. Anal. Chem. 1983, 55, 587-591.
第三章
[1] Dormand, J. R.; Prince, P. J. A Family of Embedded Runge-Kutta Formulae. J. Comp. Appl. Math. 1980, 19-26.
[2] Shampine, L. F.; M. W. Reichelt, The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 1-22.
[3] Cheney, E. W; Kincaid, D. R. Numerical Mathematics and Computing; Cengage Learning, 2007.
第四章
[1] Chu, L.; Anastasio, C. Temperature and Wavelength Dependence of Nitrite Photolysis in Frozen and Aqueous Solutions. Environ. Sci. Technol. 2007, 41, 3626-3632.
[2] Reszka, K. J.; Bilski, P.; Chignell, C. F. Epr and Spin Trapping Investigations of Nitric Oxide (•NO) from UV Irradiated Nitrite Anions in Alkaline Aqueous Solutions. J. Am. Chem. Soc. 1996, 118, 8719-8720.
[3] Mack, J.; Bolton, J. R. Photochemistry of Nitrite and Nitrate in Aqueous Solution: A Review. J. Photochem. Photobiol. A: Chem. 1999, 128, 1-13.
[4] Franco, B.; Blumenstock, T.; Cho, C.; Clarisse, L.; Clerbaux, C.; Coheur, P. F.; De Mazière, M.; De Smedt, I.; Dorn, H. P.; Emmerichs, T.; Fuchs, H.; Gkatzelis, G.; Griffith, D. W. T.; Gromov, S.; Hannigan, J. W.; Hase, F.; Hohaus, T.; Jones, N.; Kerkweg, A.; Kiendler-Scharr, A.; Lutsch, E.; Mahieu, E.; Novelli, A.; Ortega, I.; Paton-Walsh, C.; Pommier, M.; Pozzer, A.; Reimer, D.; Rosanka, S.; Sander, R.; Schneider, M.; Strong, K.; Tillmann, R.; Van Roozendael, M.; Vereecken, L.; Vigouroux, C.; Wahner, A.; Taraborrelli, D. Ubiquitous Atmospheric Production of Organic Acids Mediated by Cloud Droplets. Nature 2021, 593, 233-237.
[5] Chen, G.; Hanukovich, S.; Chebeir, M.; Christopher, P.; Liu, H. Nitrate Removal via a Formate Radical-Induced Photochemical Process. Environ. Sci. Technol. 2019, 53, 316-324.
[6] Strickler, S. J.; Kasha, M. Solvent Effects on the Electronic Absorption Spectrum of Nitrite Ion. J. Am. Chem. Soc. 1963, 85, 2899-2901.
[7] Seddon, W. A.; Fletcher, J. W.; Sopchyshyn, F. C. Pulse Radiolysis of Nitric Oxide in Aqueous Solution. Can. J. Chem. 1973, 51, 1123-1130.
[8] Merényi, G.; Lind, J.; Goldstein, S.; Czapski, G. Mechanism and Thermochemistry of Peroxynitrite Decomposition in Water. J. Phys. Chem. A. 1999, 103, 5685-5691.
[9] Goldstein, S.; Czapski, G. Mechanism of the Nitrosation of Thiols and Amines by Oxygenated •NO Solutions:  The Nature of the Nitrosating Intermediates. J. Am. Chem. Soc. 1996, 118, 3419-3425.
[10] Gonzalez, M. C.; Braun, A. M. VUV Photolysis of Aqueous Solutions of Nitrate and Nitrite. Res. Chem. Intermed. 1995, 21, 837-859.
[11] Gonzalez, M. G.; Oliveros, E.; Wörner, M.; Braun, A. M. Vacuum-Ultraviolet Photolysis of Aqueous Reaction Systems. J. Photochem. Photobiol. C: Photochem. Rev. 2004, 5, 225-246.
[12] Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (•OH/•O−) in Aqueous Solution. Phys. Chem. Ref. Data 1988, 17, 513-886.
[13] Patel, H.; Vashi, R. T., Chapter 2 - Characterization of Textile Wastewater. In Characterization and Treatment of Textile Wastewater, Patel, H.; Vashi, R. T., Eds. Elsevier: Boston, 2015; pp 21-71.
[14] McElroy, W. J.; Waygood, S. J. Oxidation of Formaldehyde by the Hydroxyl Radical in Aqueous Solution. J. Chem. Soc., Faraday Trans. 1991, 87, 1513-1521.
[15] 趙源鈞,以時間解析紅外差異吸收光譜法研究甲醇和甲二醇於光解亞硝酸 鹽水溶液中之反應性比較,2022,國立清華大學。
[16] Settimo, L.; Bellman, K.; Knegtel, R. M. A. Comparison of the Accuracy of Experimental and Predicted pKa Values of Basic and Acidic Compounds. Pharm. Res. 2014, 31, 1082-1095.
[17] Czapski, G.; Holcman, J.; Bielski, B. H. J. Reactivity of Nitric Oxide with Simple Short-Lived Radicals in Aqueous Solutions. J. Am. Chem. Soc. 1994, 116, 11465-11469.
[18] Mulazzani, Q. G.; D'Angelantonio, M.; Venturi, M.; Hoffman, M. Z.; Rodgers, M. A. J. Interaction of Formate and Oxalate Ions with Radiation-Generated Radicals in Aqueous Solution. Methylviologen as a Mechanistic Probe. J. Phys. Chem. 1986, 90, 5347-5352.
[19] Egon Wiberg, A. F. H., Inorganic Chemistry. Elsevier: 2001.
[20] Shafirovich, V.; Lymar Sergei, V. Nitroxyl and Its Anion in Aqueous Solutions: Spin States, Protic Equilibria, and Reactivities toward Oxygen and Nitric Oxide. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7340-7345.
[21] 鄭巧彌,以紅外吸收光譜法及拉曼光譜法探討甲二醇與亞硝酸鈉混合水溶 液之光解反應機構,2022,國立清華大學。
[22] Wolfenden, B. S.; Willson, R. L. Radical-Cations as Reference Chromogens in Kinetic Studies of ono-Electron Transfer Reactions: Pulse Radiolysis Studies of 2,2′-Azinobis-(3-Ethylbenzthiazoline-6-Sulphonate). J. Chem. Soc., Perkin Trans. 2 1982, 805-812.
[23] Cheng, B.-M.; Bahou, M.; Chen, W.-C.; Yui, C.-H.; Lee, Y.-P.; Lee, L. C. Experimental and Theoretical Studies on Vacuum Ultraviolet Absorption Cross Sections and Photodissociation of CH3OH, CH3OD, CD3OH, and CD3OD. J. Chem. Phys. 2002, 117, 1633-1640.
[24] Pagsberg, P.; Munk, J.; Sillesen, A.; Anastasi, C. UV Spectrum and Kinetics of Hydroxymethyl Radicals. Chem. Phys. Lett. 1988, 146, 375-381.
[25] V. Markovic, K. S., Proceedings of 3rd Tihany Symposium on Radiation Chemistry. Akademei Kiado: Budapest 1972.
(此全文20250807後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以時間解析紅外吸收光譜法研究甲醇和甲二醇於光解亞硝酸根水溶液中之反應性比較
2. 以紫外/可見光吸收光譜法、拉曼光譜法及瞬態吸收光譜法探討甲二醇與硫酸根自由基之反應產物及動力學
3. 以紅外吸收光譜法與拉曼光譜法研究亞硝酸根於含有甲二醇水溶液之光解反應機制
4. 界面活性劑對紫膜及細菌視紫質結構的影響
5. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
6. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
7. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
8. 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
9. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
10. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
11. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
12. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
13. 以步進式掃描傅氏轉換光譜儀 研究光激發金奈米粒子之瞬態紅外放光
14. 利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程
15. 以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程
 
* *