帳號:guest(18.188.107.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王竑勛
作者(外文):Wang, Hung-Hsun
論文名稱(中文):透過實驗可觀測量的焠火動力學探索量子相變
論文名稱(外文):Exploring Quantum Phase Transitions through the Quench Dynamics of Experimentally Observables
指導教授(中文):王道維
指導教授(外文):Wang, Daw-Wei
口試委員(中文):郭西川
黃一平
口試委員(外文):Gou, Shih-Chuan
Huang, Yi-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022559
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:47
中文關鍵詞:焠火動力學相變實驗可觀測量
外文關鍵詞:quench dynamicsphase transitionexperimentally observables
相關次數:
  • 推薦推薦:0
  • 點閱點閱:198
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
透過將原始希爾伯特空間降低到有效的維度空間,張量網路已經被廣泛發展並應用於模擬量子多體系統。在我們的研究中,我們利用時間演化區塊消除法(TEBD)作為數值工具進而研究具有橫向與縱向場中一維易辛模型的量子動力學。該模型是一個沒有解析解的不可積系統。
我們透過焠火系統參數來研究非平衡態動力學,並展示縱向磁場如何影響長時間的動力學,其中包括許多重要的性質,如糾纏、弛豫、熱化等。此外,我們可以透過可積和不可積系統中的焠火動力學直接探測量子相變。透過分析物理可觀測量(如橫向磁化強度)的時間演化,可以利用傅立葉轉換獲得傅立葉頻譜來辨識量子臨界點的位置。
The tensor network algorithm has been extensively developed and widely applied to efficiently simulate quantum many-body systems, reducing the original Hilbert space to a lower effective space. In our studies, we employ the Time-Evolving Block Decimation (TEBD) as a numerical tool to investigate the quantum dynamics of the 1D Ising Model with transverse and longitudinal fields. This model represents a non-integrable system without analytic solutions.
We explore the non-equilibrium dynamics by quenching the system parameters, demonstrating how the longitudinal magnetic field can influence long-time dynamics, which includes critical properties such as entanglement, relaxation, and thermalization, among others. Furthermore, quantum phase transitions can be directly probed through quench dynamics in both integrable and non-integrable systems. Analyzing the time evolution of physical observables (such as transverse magnetization), we can identify the location of quantum critical points using Fourier spectrum analysis with Fourier Transformation.
摘要
Abstract
Acknowledgements
1 Introduction 1
2 Tensor Network Algorithm 4
2.1 MPS and TEBD ............................ 4
2.2 Matrix Product State Formalism ................... 5
2.3 Canonical Form of MPS and Expectation Value . . . . . . . . . . . 7
2.4 Time-Evolving Block Decimation ................... 8
2.4.1 Time Evolution......................... 8
2.4.2 Suzuki-Trotter Decomposition................. 9
2.4.3 Infinte TEBD(iTEBD)..................... 10
2.4.4 Updating Process of TEBD .................. 10
2.4.5 The Truncation During SVD.................. 12
3 1D Transverse Field Ising Model 15
3.1 Analytical Solution ........................... 15
3.1.1 Diagonalizing the Hamiltonian................. 15
3.1.2 The Heisenberg Equation of Motion . . . . . . . . . . . . . 17 3.1.3 Physical Observables ...................... 18
3.2 The Quench Dynamics of Transverse Magnetization via the Fourier Analysis................................. 19
4 Numerical Results of Quantum Quench Dynamics 24
4.1 Transverse Magnetization ....................... 24
4.2 Entanglement Entropy ......................... 26
5 1D Transverse Field Ising Model in the Presence of a Longitudinal Field 29
5.1 Ground-State Phase Diagram through Imaginary Time Evolution . 30
5.2 Fourier Analysis in Identifying the Critical Points through Quench
Dynamics ................................ 34
5.3 Ground State Phase Diagram from Quench Dynamics: Analysis of
Experimentally Observables ...................... 41
6 Conclusions and Future Work 43
Bibliography 45
[1] G. Vidal. Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett., 98:070201, Feb 2007.
[2] Peter Kramer and Marcos Saraceno, editors. The time-dependent variational principle (TDVP), pages 3–14. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.
[3] R. R. dos Santos. Introduction to quantum monte carlo simulations for fermionic systems. brazilian journal of physics. Braz. J. Phys., 33(1):36–54, 2003.
[4] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992.
[5] Anatoli Polkovnikov Luca D’Alessio, Yariv Kafri and Marcos Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Advances in Physics, 65(3):239–362, 2016.
[6] Rahul Nandkishore and David A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6(1):15–38, 2015.
[7] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn.
Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91:021001, May 2019.
[8] Paraj Titum, Joseph T. Iosue, James R. Garrison, Alexey V. Gorshkov, and Zhe-Xuan Gong. Probing ground-state phase transitions through quench dynamics. Phys. Rev. Lett., 123:115701, Sep 2019.
[9] Johannes Schachenmayer. Dynamics and long-range interactions in 1d quantum systems. Master’s thesis, Technische Universit ̈at M ̈unchen (TUM), Germany, 2008.
[10] Tatjana Puskarov and Dirk Schuricht. Time evolution during and after finite-time quantum quenches in the transverse-field Ising chain. SciPost Phys., 1:003, 2016.
[11] Luigi Amico and Andreas Osterloh. Out of equilibrium correlation functions of quantum anisotropic xy models: one-particle excitations. Journal of Physics A: Mathematical and General, 37(2):291, dec 2003.
[12] Pasquale Calabrese and John Cardy. Evolution of entanglement entropy in one-dimensional systems. Journal of Statistical Mechanics: Theory and Experiment, 2005(04):P04010, apr 2005.
[13] Marton Kormos, Mario Collura, Gabor Tak ́acs, and Pasquale Calabrese. Real-time confinement following a quantum quench to a non-integrable model.
Nature Physics, 13(3):246–249, 2017.
[14] H. C. Fogedby. The ising chain in a skew magnetic field. Journal of Physics C: Solid State Physics, 11(13):2801, jul 1978.
[15] A. B. Zamolodchikov. Integrals of Motion and S Matrix of the (Scaled) T=T(c) Ising Model with Magnetic Field. Int. J. Mod. Phys. A, 4:4235,
1989.
[16] V.A. Fateev. The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories. Physics Letters B, 324(1):45–51, 1994.
[17] A. A. Ovchinnikov, D. V. Dmitriev, V. Ya. Krivnov, and V. O. Cheranovskii. Antiferromagnetic ising chain in a mixed transverse and longitudinal magnetic field. Phys. Rev. B, 68:214406, Dec 2003.
[18] Pierre Pfeuty. The one-dimensional ising model with a transverse field. Annals of Physics, 57(1):79–90, 1970.
[19] O. F. de Alcantara Bonfim, B. Boechat, and J. Florencio. Ground-state properties of the one-dimensional transverse ising model in a longitudinal magnetic field. Phys. Rev. E, 99:012122, Jan 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *