|
[1] G. Vidal. Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett., 98:070201, Feb 2007. [2] Peter Kramer and Marcos Saraceno, editors. The time-dependent variational principle (TDVP), pages 3–14. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981. [3] R. R. dos Santos. Introduction to quantum monte carlo simulations for fermionic systems. brazilian journal of physics. Braz. J. Phys., 33(1):36–54, 2003. [4] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992. [5] Anatoli Polkovnikov Luca D’Alessio, Yariv Kafri and Marcos Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Advances in Physics, 65(3):239–362, 2016. [6] Rahul Nandkishore and David A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6(1):15–38, 2015. [7] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91:021001, May 2019. [8] Paraj Titum, Joseph T. Iosue, James R. Garrison, Alexey V. Gorshkov, and Zhe-Xuan Gong. Probing ground-state phase transitions through quench dynamics. Phys. Rev. Lett., 123:115701, Sep 2019. [9] Johannes Schachenmayer. Dynamics and long-range interactions in 1d quantum systems. Master’s thesis, Technische Universit ̈at M ̈unchen (TUM), Germany, 2008. [10] Tatjana Puskarov and Dirk Schuricht. Time evolution during and after finite-time quantum quenches in the transverse-field Ising chain. SciPost Phys., 1:003, 2016. [11] Luigi Amico and Andreas Osterloh. Out of equilibrium correlation functions of quantum anisotropic xy models: one-particle excitations. Journal of Physics A: Mathematical and General, 37(2):291, dec 2003. [12] Pasquale Calabrese and John Cardy. Evolution of entanglement entropy in one-dimensional systems. Journal of Statistical Mechanics: Theory and Experiment, 2005(04):P04010, apr 2005. [13] Marton Kormos, Mario Collura, Gabor Tak ́acs, and Pasquale Calabrese. Real-time confinement following a quantum quench to a non-integrable model. Nature Physics, 13(3):246–249, 2017. [14] H. C. Fogedby. The ising chain in a skew magnetic field. Journal of Physics C: Solid State Physics, 11(13):2801, jul 1978. [15] A. B. Zamolodchikov. Integrals of Motion and S Matrix of the (Scaled) T=T(c) Ising Model with Magnetic Field. Int. J. Mod. Phys. A, 4:4235, 1989. [16] V.A. Fateev. The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories. Physics Letters B, 324(1):45–51, 1994. [17] A. A. Ovchinnikov, D. V. Dmitriev, V. Ya. Krivnov, and V. O. Cheranovskii. Antiferromagnetic ising chain in a mixed transverse and longitudinal magnetic field. Phys. Rev. B, 68:214406, Dec 2003. [18] Pierre Pfeuty. The one-dimensional ising model with a transverse field. Annals of Physics, 57(1):79–90, 1970. [19] O. F. de Alcantara Bonfim, B. Boechat, and J. Florencio. Ground-state properties of the one-dimensional transverse ising model in a longitudinal magnetic field. Phys. Rev. E, 99:012122, Jan 2019. |