帳號:guest(3.133.115.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林渲庭
作者(外文):Lin, Hsuan-Ting
論文名稱(中文):3,10 溴甲基-[5]菲烯在銀(111)的表面合成
論文名稱(外文):On-Surface synthesis of 3,10 Bis(Bromo Methyl)-[5] Phenacene
指導教授(中文):霍夫曼
指導教授(外文):Germar, Hoffmann
口試委員(中文):唐述中
林俊良
口試委員(外文):Tang, Shu-Jung
Lin, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022557
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:51
中文關鍵詞:掃描隧道顯微鏡/光譜學表面合成烏爾曼耦合武茲反應菲烯
外文關鍵詞:Scanning Tunneling Microscope/Spectroscopy (STM/STS)On-Surface synthesisMolecular wireUllmann CouplingWurtz reaction[5]Phenacene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:350
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電子設備的微型化朝向二維材料和有機分子發展[1]。近年來,這些基於分子的器件已成功實現,但在電子遷移性和結構挑戰方面仍需要取得更多進展,而了解表面分子的結構和電子特性是相當重要的。藉由掃描隧道顯微鏡/光譜學 ,原子定義的金屬表面對分子的研究提供了一個獨特的平台 [2]。此外,自下而上合成的分子納米結構也是可能的,即所謂的表面合成[3]。不同的偶聯反應已經成功證實了其可行性,例如格拉澤耦合和烏爾曼耦合。但是化學中的一個著名反應“武茲反應”仍然是較為新穎的[4]。相較於烏爾曼耦合,該反應在表面耦合機制的溫度更為有利。本論文研究了3,10 溴甲基-[5]菲烯在銀(111)的武茲反應。這些菲烯類分子展現了有機半導體的高電子遷移率,並且可以藉由基板改變它們的性質[5]。進而與之前對金(111) 上相同分子的研究進行了比較。
Device miniaturization pushed electronics towards 2D materials and organic molecules [1]. These molecular based devices are successfully realized in recent years but demands progress in terms of electric mobility and structural challenges. It makes important to understand the structural and electronic properties of molecules on surfaces. Atomically defined metal surfaces provide a unique platform to study molecules with help of Scanning Tunneling Microscopy/Spectroscopy [2]. In addition, bottom-up synthesis of molecular nanostructures is also possible, so-called On-Surface Synthesis [3]. Different coupling reactions have been demonstrated successfully e.g. Glaser Coupling, and Ullmann Coupling. But a well-known reaction in Chemistry “Wurtz reaction” is still new to surfaces [4]. This reaction is advantageous over the temperature of on surface coupling mechanism in comparison to Ullmann coupling. In the thesis, the Wurtz reaction is studied on Ag(111) with help of 3,10 Bis(Bromo Methyl)-[5] Phenacene . These phenacene molecules represent a class of high electric mobility of organic semiconductors and can alter their properties with substrates[5]. Therefore, A comparison is made with previous studies of the same molecule on Au(111).
Content
中文摘要 i
Abstract ii
Acknowledgements iii
Content iv
圖目錄 vi
Chapter1. Introduction 1
Chapter2. Instrumentation 2
2.1. Overview of the experimental setup 2
2.1.1. Load-lock chamber 3
2.1.2. Preparation Chamber 3
2.1.3. STM Chamber 4
2.1.4. Sample holder and scanning 6
2.2. Omicron VT-SPM 8
2.2.1. Quartz Crystal Resonator and Molecules evaporator 11
2.2.2. Quartz Crystal Resonator 12
2.2.3. Boltzmann distribution effect 13
2.2.4. Molecules' evaporation process 15
2.2.5. Evaporation of Picene on HOPG 16
Chapter3. Theory 21
3.1. Quantum Mechanic Potential Wall 21
3.2. Bardeen theory 23
Chapter4. Overview 24
4.1. On-surface synthesis and Ullmann coupling 24
4.2. Drift correct images 25
4.3. Crystallographic axes 28
4.4. 3,10-Bis(bromomethyl)picene on Au(111) 29
Chapter5. Experiment 30
5.1. Molecule characteristic 30
5.1.1. 3,10-Bis(Bromo-Methyl)-[5]Phenacene 30
5.2. Molecule preparation 30
5.3. 3,10-Bis(Bromo-Methyl)-[5]Phenacene on Ag(111) 31
5.3.1. Growth 31
5.3.2. Under different power annealing 32
5.3.3. Polymerization 35
5.3.4. Scanning tunneling spectroscopy 39
5.4. Ion gauge treatment with 3,10-Bis(Bromo-Methyl)-[5]Phenacene on Ag(111) 40
5.4.1. Self-assemble without ion-Gauge switch-ON. 40
41
5.4.2. Self-assemble first experiment after ion-Gauge switch-ON. 42
5.4.3. Self-assemble second experiment after ion-Gauge switch-ON. 46
Chapter6. Summary 48
Chapter7. Bibliography 49


[1] Huang, X., Liu, C. & Zhou, P. 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater Appl 6, 51 (2022).
[2] Feenstra, R. M.; Hla, S. W. Introduction to Scanning Tunneling Microscopy of Metals and Semiconductor. In Physics of Solid Surfaces; Springer: 2015; pp 15.
[3] Shen, Q., Gao, H. Y., Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today, 13, 77-96, 2017.
[4] Sun, Q.; Cai, L.; Ding, Y.; Ma, H.; Yuan, C.; Xu, W. SingleMolecule Insight into Wurtz Reaction on Metal Surfaces. Phys. Chem. Chem. Phys. 2016, 18, 2730−2735.
[5] Kubozono, Y. et al. Transistor application of phenacene molecules and their characteristics. Eur. J. Inorg. Chem. 3806–3819 (2014)
[6] Sun, Y., Liu, Y., & Zhu, D. (2005). Advances in organic field-effect transistors. Journal of Materials Chemistry, 15(1), 53.
[7] A Ravikumar Reddy and Michael Bendikov. Diels–alder reaction of acenes with singlet and triplet oxygen–theoretical study of two-state reactivity. Chemical communications, (11):1179–1181, 2006
[8] Al Ruzaiqi, A., Okamoto, H., Kubozono, Y., Zschieschang, U., Klauk, H., Baran, P., & Gleskova, H. (2019). Low-voltage organic thin-film transistors based on [n]phenacenes. Organic Electronics, 73, 286–291.
[9] A. Kühnle, Self-assembly of organic molecules at metal surfaces, Curr. Opin. Colloid Interface Sci. 14 (2) (2009) 157–168,
[10] Hu Y, Lu J, Feng H. Surface modification and functionalization of powder materials by atomic layer deposition: a review. RSC Adv. 2021 Mar 23;11(20):11918-11942.
[11] R ´aM Feenstra. Tunneling spectroscopy of the (110) surface of direct-gap iii-v semiconductors. Physical Review B, 50(7):4561, 1994.
[12] Randall M Feenstra, JY Lee, MH Kang, G Meyer, and KH Rieder. Band gap of the ge (111) c (2× 8) surface by scanning tunneling spectroscopy. Physical Review B, 73(3):035310, 2006.
[13] W. Hebenstreit, J. Redinger, Z. Horozova, Atomic resolution by STM on ultra-thin films of alkali halides: Experiment and local density calculations, Surf. Sci. Lett. 424 (2–3) (1997) L321–L328.
[14] Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun, Stephan Blankenburg, Matthias Muoth, Ari P Seitsonen, Moussa Saleh, Xinliang Feng, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466(7305):470–473, 2010.
[15] Song, S., Su, J., Telychko, M., Li, J., Li, G., Li, Y., ... Lu, J. On-surface synthesis of graphene nanostructures with π-magnetism. ACS nano, 11(4), 4183-4190, 2017.
[16] Yutaka Wakayama (2016). On-surface molecular nanoarchitectonics: From self-assembly to directed assembly. Jpn. J. Appl. Phys. 55 1102AA
[17] Mohamed MS Abdel-Mottaleb, G¨unther G¨otz, Pinar Kilickiran, Peter B¨auerle, and Elena Mena-Osteritz. Influence of halogen substituents on the self-assembly of oligothiophenes- a combined stm and theoretical approach. Langmuir, 22(4):1443–1448, 2006
[18] Meiqiu Dong, Kai Miao, Juntian Wu, Xinrui Miao, Jinxing Li, Peng Pang, and Wenli Deng. Halogen substituent effects on concentration-controlled selfassembly of fluorenone derivatives: halogen bond versus hydrogen bond. The Journal of Physical Chemistry C, 123(7):4349–4359, 2019.
[19] Viyannalage, L.T.; Vasilic, R.; Dimitrov, N. Epitaxial growth of Cu on Au(111) and Ag(111) by surface limited redox replacement - An electrochemical and STM study. J. Phys. Chem. C 2007, 111, 4036–4041.
[20] Baratoff A (1984) Theory of Scanning Tunneling Microscopy – Methods and Approximations. Physica Bcehsp sp025/cehsp sp025/C 127:143–150.
[21] Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017).
[22] Lin, H., & Sun, D. (2013). Recent Synthetic Developments and Applications of the Ullmann Reaction. A Review. Organic Preparations and Procedures International, 45(5), 341–394.
[23] Wang, W., Shi, X., Wang, S., Van Hove, M. A., & Lin, N. (2011). Single-Molecule Resolution of an Organometallic Intermediate in a Surface-Supported Ullmann Coupling Reaction. Journal of the American Chemical Society, 133(34), 13264–13267.
[24] C. J. Judd, S. L. Haddow, N. R. Champness and A. Saywell, Ullmann coupling reactions on Ag(111) and Ag(110); substrate influence on the formation of covalently coupled products and intermediate organometallic structures, Sci. Rep., 2017, 7, 14541.
[25] Yothers, M. P., Browder, A. E., & Bumm, L. A. (2017). Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images. Review of Scientific Instruments, 88(1), 013708. doi:10.1063/1.4974271.
[26] Rahe, P., Bechstein, R. & Kühnle, A. Vertical and lateral drift corrections of scanning probe microscopy images. J. Vac. Sci. Technol. B. 28, C4E31–C4E38 (2010).
[27] Ma, D.D.D.; Lee, C.S.; Au, F.C.K.; Tong, S.Y.; Lee, S.T. Small-iameter Silicon Nanowire Surfaces. Science 2003, 299, 1874–1877.
[28] Yoshida, Y., Yang, H.-H., Huang, H.-S., Guan, S.-Y., Yanagisawa, S., Yokosuka, T., … Hasegawa, Y. (2014). Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111). The Journal of Chemical Physics, 141(11), 114701
[29] Judd CJ, Haddow SL, Champness NR, Saywell A. Ullmann Coupling Reactions on Ag(111) and Ag(110); Substrate Influence on the Formation of Covalently Coupled products and Intermediate Metal-Organic Structures. Sci Rep. 2017 Nov;7(1) 14541.
[30] Carpy, Tomas. "A scanning tunneling microscopy and spectroscopic study of bromine functionalised molecules on metal surfaces." (2015).
[31] Zuzak, R., Jančařík, A., Gourdon, A., Szymonski, M., & Godlewski, S. (2020). On-Surface Synthesis with Atomic Hydrogen. ACS Nano, 14(10), 13316–13323.
[32] Lin, Y., Huang, Z., Wen, X., Rong, W., Peng, Z., Diao, M., … Wu, K. (2020). Steering Effect of Bromine on Intermolecular Dehydrogenation Coupling of Poly(p-phenylene) on Cu(111). ACS Nano.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *