|
[1] A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires”, Physics–Uspekhi 44, 131 (2001).
[2] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R. Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, and N. P. Butch, “Nearly ferromagnetic spin-triplet superconductivity”, Science 365, 684–687 (2019).
[3] L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M. Sigrist, Z. Wang, N. P. Butch, and V. Madhavan, “Chiral superconductivity in heavy-fermion metal UTe2”, Nature 579, 523–527 (2020).
[4] M. Kayyalha, D. Xiao, R. Zhang, J. Shin, J. Jiang, F. Wang, Y.-F. Zhao, R. Xiao, L. Zhang, K. M. Fijalkowski, P. Mandal, M. Winnerlein, C. Gould, Q. Li, L. W. Molenkamp, M. H. W. Chan, N. Samarth, and C.-Z. Chang, “Absence of evidence for chiral Majorana modes in quantum anomalous Hallsuperconductor devices”, Science 367, 64–67 (2020).
[5] Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and K. L. Wang, “Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure”, Science 357, 294–299 (2017).
[6] N. Read and D. Green, “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect”, Physical Review B 61, 10267–10297 (2000).
[7] D. Sherman, J. S. Yodh, S. M. Albrecht, J. Nygård, P. Krogstrup, and C. M. Marcus, “Normal, superconducting and topological regimes of hybrid double quantum dots”, Nature Nanotechnology 12, 212–217 (2017).
[8] D. M. T. v. Zanten, D. Sabonis, J. Suter, J. I. Väyrynen, T. Karzig, D. I. Pikulin, E. C. T. O'Farrell, D. Razmadze, K. D. Petersson, P. Krogstrup, and C. M. Marcus, “Photon-assisted tunnelling of zero modes in a Majorana wire”, Nature Physics 16, 663–668 (2020).
[9] M.-T. Deng, S. Vaitiekėnas, E. Prada, P. San-Jose, J. Nygård, P. Krogstrup, R. Aguado, and C. M. Marcus, “Nonlocality of Majorana modes in hybrid nanowires”, Physical Review B 98, 085125 (2018).
[10] D. I. Pikulin, B. van Heck, T. Karzig, E. A. Martinez, B. Nijholt, T. Laeven, G. W. Winkler, J. D. Watson, S. Heedt, M. Temurhan, V. Svidenko, R. M. Lutchyn, M. Thomas, G. de Lange, L. Casparis, and C. Nayak, Protocol to identify a topological superconducting phase in a three-terminal device, 2021.
[11] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, “Milestones Toward Majorana-Based Quantum Computing”, Physical Review X 6, 031016 (2016).
[12] J. Alicea, Y. Oreg, G. Refael, F. v. Oppen, and M. P. A. Fisher, “Non-Abelian statistics and topological quantum information processing in 1D wire networks”, Nature Physics 7, 412–417 (2011).
[13] Q.-B. Cheng, J. He, and S.-P. Kou, “Verifying non-Abelian statistics by numerical braiding Majorana fermions”, Physics Letters A 380, 779–782 (2016).
[14] A. Więckowski, M. Mierzejewski, and M. Kupczyński, “Majorana phase gate based on the geometric phase”, Physical Review B 101, 014504 (2020).
[15] M. Sekania, S. Plugge, M. Greiter, R. Thomale, and P. Schmitteckert, “Braiding errors in interacting Majorana quantum wires”, Physical Review B 96, 094307 (2017).
[16] X.-M. Zhao, J. Yu, J. He, Q.-B. Cheng, Y. Liang, and S.-P. Kou, “The simulation of non-Abelian statistics of Majorana fermions in Ising chain with Z2 symmetry”, Modern Physics Letters B 31, 1750123 (2017).
[17] C. S. Amorim, K. Ebihara, A. Yamakage, Y. Tanaka, and M. Sato, “Majorana braiding dynamics in nanowires”, Physical Review B 91, 174305 (2015).
[18] T. Sanno, S. Miyazaki, T. Mizushima, and S. Fujimoto, “Ab initio simulation of non-Abelian braiding statistics in topological superconductors”, Physical Review B 103, BdG and zero mode., 054504 (2021).
[19] C.-K. Chiu, M. M. Vazifeh, and M. Franz, “Majorana fermion exchange in strictly one-dimensional structures”, EPL (Europhysics Letters) 110, 10001 (2015).
[20] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of topological quantum matter with symmetries”, Rev. Mod. Phys. 88, 035005 (2016).
[21] V. Kremenetski, C. Mejuto-Zaera, S. J. Cotton, and N. M. Tubman, “Simulation of adiabatic quantum computing for molecular ground states”, The Journal of Chemical Physics 155, 234106 (2021).
[22] S. R. Manmana, A. Muramatsu, and R. M. Noack, “Time evolution of onedimensional Quantum Many Body Systems”, AIP Conference Proceedings 789, 269–278 (2005).
[23] N. Mukunda and R. Simon, “Quantum Kinematic Approach to the Geometric Phase. I. General Formalism”, Annals of Physics 228, 205–268 (1993).
[24] J.-J. Miao, H.-K. Jin, F.-C. Zhang, and Y. Zhou, “Majorana zero modes and long range edge correlation in interacting Kitaev chains: analytic solutions and density-matrix-renormalization-group study”, Scientific Reports 8, 488 (2018). |