|
[1] Rybin, M. V.; Filonov, D. S.; Samusev, K. B.; Belov, P. A.; Kivshar, Y. S.; Limonov, M. F., Phase diagram for the transition from photonic crystals to dielectric metamaterials, Nat. Commun., 2015, 6. [2] Ritchie, R. H., Plasma losses by fast electrons in thin films, Phys. Rev., 1957, 106. [3] Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics, Nature, 2003, 424. [4] Novotny, L.; Hecht, B., Principles of Nano-Optics, Cambridge University Press, 2006. [5] Stockman, M. I., Nanoplasmonics: The physics behind the applications, Phys. Today, 2011, 64. [6] Johnson, P. B.; Christy, R. W., Optical constants of the noble metals, Phys. Rev. B, 1972, 6. [7] 何符漢、蔡定平、劉威志, 表面電漿子理論與模擬, 物理雙月刊, 2006. [8] 邱國斌、蔡定平, 金屬表面電漿簡介, 2006. [9] Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999. [10] Wang, F.; Shen, Y. R., General properties of local plasmons in metal nanostructures, Phys. Rev. Lett., 2006, 97. [11] Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Berlin, Heidelberg, 1988. [12] Cheng, C.-W., Study on Surface Plasmonic Lattices from Stroung Coupling to Lasing, National Tsing-Hua University, 2022. [13] Gao, H.; Zhou, W.; Odom, T. W., Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library, Adv. Funct. Mater., 2010, 20. [14] Gao, H.; Henzie, J.; Lee, M. H.; Odom, T. W., Screening plasmonic materials using pyramidal gratings, Proc. Natl. Acad. Sci. U.S.A., 2008, 105. [15] von Neuman, J.; Wigner, E., Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Z., 1929, 30. [16] Hsu, C. W.; Zhen, B.; Stone, A. D.; Joannopoulos, J. D.; Soljačić, M., Bound states in the continuum, Nat. Rev. Mater., 2016, 1. [17] Sun, S.; Ding, Y.; Li, H.; Hu, P.; Cheng, C.-W.; Sang, Y.; Cao, F.; Hu, Y.; Alù, A.; Liu, D.; Wang, Z.; Gwo, S.; Han, D.; Shi, J., Tunable plasmonic bound states in the continuum in the visible range, Phys. Rev. B, 2021, 103. [18] Azzam, S. I.; Shalaev, V. M.; Boltasseva, A.; Kildishev, A. V., Formation of bound states in the continuum in hybrid plasmonic-photonic systems, Phys. Rev. Lett., 2018, 121. [19] Nye, J. F.; Hajnal, J. V., The wave structure of monochromatic electromagnetic radiation, Proc. R. Soc. A, 1987, 409. [20] Nakahara, M., Geometry, topology and physics, CRC press, 2018. [21] Zhen, B.; Hsu, C. W.; Lu, L.; Stone, A. D.; Soljačić, M., Topological Nature of Optical Bound States in the Continuum, Phys. Rev. Lett., 2014, 113. [22] Hsu, C. W.; Zhen, B.; Lee, J.; Chua, S.-L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M., Observation of trapped light within the radiation continuum, Nature, 2013, 499. [23] Kang, M.; Mao, L.; Zhang, S.; Xiao, M.; Xu, H.; Chan, C. T., Merging bound states in the continuum by harnessing higher-order topological charges, Light Sci. Appl. , 2022, 11. [24] Park, J. H.; Ambwani, P.; Manno, M.; Lindquist, N. C.; Nagpal, P.; Oh, S.-H.; Leighton, C.; Norris, D. J., Single-crystalline silver films for plasmonics, Adv. Mater., 2012, 24. [25] Nagpal, P.; Lindquist, N. C.; Oh, S.-H.; Norris, D. J., Ultrasmooth patterned metals for plasmonics and metamaterials, Science, 2009, 325. [26] McPeak, K. M.; Jayanti, S. V.; Kress, S. J. P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D. J., Plasmonic films can easily be better: rules and recipes, ACS Photonics, 2015, 2. [27] Zhang, Y.; Zhao, M.; Wang, J.; Liu, W.; Wang, B.; Hu, S.; Lu, G.; Chen, A.; Cui, J.; Zhang, W.; Hsu, C. W.; Liu, X.; Shi, L.; Yin, H.; Zi, J., Momentum-space imaging spectroscopy for the study of nanophotonic materials, Sci. Bull., 2021, 66. [28] Liu, J.; Garcia, P. D.; Ek, S.; Gregersen, N.; Suhr, T.; Schubert, M.; Mørk, J.; Stobbe, S.; Lodahl, P., Random nanolasing in the Anderson localized regime, Nat. Nanotechnol., 2014, 9. [29] Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I., Two-dimensional photonic band-gap defect mode laser, Science, 1999, 284. [30] Park, H.-G.; Kim, S.-H.; Kwon, S.-H.; Ju, Y.-G.; Yang, J.-K.; Baek, J.-H.; Kim, S.-B.; Lee, Y.-H., Electrically driven single-cell photonic crystal laser, Science, 2004, 305. [31] Shelby, R. A.; Smith, D. R.; Schultz, S., Experimental verification of a negative index of refraction, Science, 2001, 292. [32] Lal, S.; Link, S.; Halas, N. J., Nano-optics from sensing to waveguiding, Nat. Photon., 2007, 1. [33] Nair, R. V.; Vijaya, R., Photonic crystal sensors: An overview, Prog. Quantum. Electron. , 2010, 34. [34] Fang, Y.; Sun, M., Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits, Light Sci. Appl. , 2015, 4. [35] Chizari, A.; Abdollahramezani, S.; Jamali, M. V.; Salehi, J. A., Analog optical computing based on a dielectric meta-reflect array, Opt. Lett., 2016, 41. [36] Shen, Y.; Harris, N. C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; Soljačić, M., Deep learning with coherent nanophotonic circuits, Nat. Photon., 2017, 11. [37] Lai, C. W.; Kim, N. Y.; Utsunomiya, S.; Roumpos, G.; Deng, H.; Fraser, M. D.; Byrnes, T.; Recher, P.; Kumada, N.; Fujisawa, T.; Yamamoto, Y., Coherent zero-state and π-state in an exciton–polariton condensate array, Nature, 2007, 450. [38] Lu, L.; Joannopoulos, J. D.; Soljačić, M., Topological photonics, Nat. Photon., 2014, 8. [39] Lu, L.; Joannopoulos, J. D.; Soljačić, M., Topological states in photonic systems, Nat. Phys., 2016, 12. [40] Cao, T.; Fang, L.; Cao, Y.; Li, N.; Fan, Z.; Tao, Z., Dynamically reconfigurable topological edge state in phase change photonic crystals, Sci. Bull., 2019, 64. [41] Chen, W.-J.; Jiang, S.-J.; Chen, X.-D.; Zhu, B.; Zhou, L.; Dong, J.-W.; Chan, C. T., Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun., 2014, 5. [42] Ge, L.; Wang, L.; Xiao, M.; Wen, W.; Chan, C. T.; Han, D., Topological edge modes in multilayer graphene systems, Opt. Express, 2015, 23. [43] Dong, J. W.; Chen, X. D.; Zhu, H.; Wang, Y.; Zhang, X., Valley photonic crystals for control of spin and topology, Nat Mater., 2017, 16. [44] Doeleman, H. M.; Monticone, F.; den Hollander, W.; Alù, A.; Koenderink, A. F., Experimental observation of a polarization vortex at an optical bound state in the continuum, Nat. Photon., 2018, 12. [45] Zhen, B.; Hsu, C. W.; Lu, L.; Stone, A. D.; Soljacic, M. In Topological Nature of Bound States in the Continuum, Frontiers in Optics 2014, Tucson, Arizona, 2014/10/19; Optica Publishing Group: Tucson, Arizona, 2014; p FTh2A.3. [46] Sang, Y.; Wang, C.-Y.; Raja, S. S.; Cheng, C.-W.; Huang, C.-T.; Chen, C.-A.; Zhang, X.-Q.; Ahn, H.; Shih, C.-K.; Lee, Y.-H.; Shi, J.; Gwo, S., Tuning of two-dimensional plasmon–exciton coupling in full parameter space: A polaritonic non-hermitian system, Nano Lett., 2021, 21. [47] Zhen, B.; Hsu, C. W.; Igarashi, Y.; Lu, L.; Kaminer, I.; Pick, A.; Chua, S.-L.; Joannopoulos, J. D.; Soljačić, M., Spawning rings of exceptional points out of Dirac cones, Nature, 2015, 525. [48] Shen, H.; Zhen, B.; Fu, L., Topological band theory for non-hermitian hamiltonians, Phys. Rev. Lett., 2017, 120. [49] Zhou, H.; Peng, C.; Yoon, Y.; Hsu, C. W.; Nelson, K. A.; Fu, L.; Joannopoulos, J. D.; Soljačić, M.; Zhen, B., Observation of bulk Fermi arc and polarization half charge from paired exceptional points, Science, 2018, 359. [50] Yee, K., Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 1966, 14. [51] Hao, Y.; Mittra, R., FDTD modeling of metamaterials: Theory and applications, Artech House, 2008. [52] Che, Z.; Zhang, Y.; Liu, W.; Zhao, M.; Wang, J.; Zhang, W.; Guan, F.; Liu, X.; Liu, W.; Shi, L.; Zi, J., Polarization Singularities of Photonic Quasicrystals in Momentum Space, Phys. Rev. Lett., 2021, 127. [53] Salerno, G.; Heilmann, R.; Arjas, K.; Aronen, K.; Martikainen, J.-P.; Törmä, P., Loss-Driven Topological Transitions in Lasing, Phys. Rev. Lett., 2022, 129. [54] Chen, A.; Liu, W.; Zhang, Y.; Wang, B.; Liu, X.; Shi, L.; Lu, L.; Zi, J., Observing vortex polarization singularities at optical band degeneracies, Phys. Rev. B, 2019, 99.
|