帳號:guest(3.145.172.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張育慈
作者(外文):Chang, Yu-Tzu
論文名稱(中文):金屬/銅氧化物超導體之贗能隙相接面的安德烈夫反射能譜
論文名稱(外文):Andreev Reflection Spectroscopy for Metal/Pseudo-gap Phase of Cuprate Superconductor Junctions
指導教授(中文):牟中瑜
指導教授(外文):Mou, Chung-Yu
口試委員(中文):張明哲
仲崇厚
口試委員(外文):Chang, Ming-Che
CHUNG, Chung-Hou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022536
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:43
中文關鍵詞:高溫電洞摻雜超導體d波超導體穿隧效應安德烈夫反射贗能隙配對密度波
外文關鍵詞:high Tc hole-doped superconductorsd-wave superconductorstunneling spectroscopyAndreev refectionpseudo-gappair density wave
相關次數:
  • 推薦推薦:0
  • 點閱點閱:146
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
高溫銅氧化物是準二維材料,當材料被電洞摻雜時可以觀察到許多新現象。在本論文中,我們重點研究了低摻雜區域中高溫銅氧化物的穿隧能譜。我們首先分析了高溫銅氧化物的穿隧能譜,在緊束縛極限中具有均勻的 d 波配對對稱性。通過在緊束縛極限中使用 BTK 公式,我們計算了普通金屬 -(110)方向上高溫銅氧化物接面的穿隧能譜,並驗證了零偏壓電導峰值出現在能譜中。我們接下來推廣 BTK 公式來研究當高溫銅氧化物處於贗能隙相時的穿隧能譜。贗能隙相由具有 d 波對稱性的配對密度波 (PDW) 態建模,並且有序波向量在 x 方向或 y 方向。我們發現與來自 PDW 態的 Andreev 反射相關的穿隧能譜表現出幾個重要特徵,在微分電導曲線的特定電壓處具有峰值或階躍。這些特徵是穿隧實驗中 PDW 態的重要特徵。
The high-Tc cuprates are quasi-two dimensional materials with many novel phenomena observed when the materials are hole-doped. In this thesis, we focus on the tunneling spectrum of high-Tc cuprates in the underdoped region. We first analyze the tunneling spectrum for high Tc cuprates with a uniform d-wave pairing symmetry in tight-binding limit. By using the BTK formalism in the tight-binding limit, we compute the tunneling spectrum for the junction of normal metal - high Tc cuprates in the (110) direction and verify that a zero-bias-conductance-peak (ZBCP) emerges in the spectrum. We next generalize the BTK formalism to investigate the tunneling spectrum when the high-Tc cuprates are in the pseudo-gap phase. The pseudo-gap phase is modeled by the pair density wave (PDW) state with d-wave symmetry and the ordering wavevector being either in x direction or y direction. We find that the tunneling spectrum that is associated with the Andreev reflections from the PDW state exhibit several important features with either peaks or steps at specific voltages in the differential conductance curve.
These features serve as important signatures for the PDW state in tunneling experiments.
摘要 I
Abstract II
Acknowledgements III
Contents V
List of Tables VI
List of Figures IX
1 Introduction 1
2 Tunneling Spectroscopy of d-wave Superconductors 5
2.1 Local density of states . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Zero Energy Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Non-Zero Momentum Gap Function . . . . . . . . . . . . . . . . . . . 10
3 BTK method for NS Junction 11
3.1 N-Isotropic Superconductors in the continuum limit . . . . . . . . . . . 11
3.2 N-Anisotropic Superconductors in the continuum limit . . . . . . . . . 16
4 N-dSC Junction in the tight-binding limit 18
4.1 N(100)-I-dSC Junction . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1 N-I-d(100) junction . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 N-I-d(110) junction . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Boundary conditions for two find of junctions . . . . . . . . . . 23
IV
4.2 N-I-N junction for normalized conductance . . . . . . . . . . . . . . . 26
5 Pseudo-gap Phase of Cuprate Superconductors and N/dPDW junction 30
5.1 Coupled to three-band PDW . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 dPDW state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 N-I-dPDW(100) Junction . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 Conclusions and Future Works 40
Bibliography 41
[1] Daniel F. Agterberg, J.C. Sé amus Davis, Stephen D. Edkins, Eduardo Frad-
kin, Dale J. Van Harlingen, Steven A. Kivelson, Patrick A. Lee, Leo Radzi-
hovsky, John M. Tranquada, and Yuxuan Wang. The physics of pair-density
waves: Cuprate superconductors and beyond. Annual Review of Condensed Mat-
ter Physics, 11(1):231–270, mar 2020.
[2] Yasuhiro Asano. Andreev Reflection in Superconducting Junctions. Springer,
2021.
[3] G. E. Blonder, M. Tinkham, and T. M. Klapwijk. Transition from metallic to
tunneling regimes in superconducting microconstrictions: Excess current, charge
imbalance, and supercurrent conversion. Phys. Rev. B, 25:4515–4532, Apr 1982.
[4] J. C. Campuzano, H. Ding, M. R. Norman, M. Randeira, A. F. Bellman, T. Yokoya,
T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki. Direct ob-
servation of particle-hole mixing in the superconducting state by angle-resolved
photoemission. Phys. Rev. B, 53:R14737–R14740, Jun 1996.
[5] Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press,
2015.
[6] Zhehao Dai, Ya-Hui Zhang, T. Senthil, and Patrick A. Lee. Pair-density waves,
charge-density waves, and vortices in high-Tc cuprates. Phys. Rev. B, 97:174511,
May 2018.
[7] Øystein Fischer, Martin Kugler, Ivan Maggio-Aprile, Christophe Berthod, and
Christoph Renner. Scanning tunneling spectroscopy of high-temperature super-
conductors. Rev. Mod. Phys., 79:353–419, Mar 2007.
41
[8] He Rui-Hua Tanaka Kiyohisa Testaud Jean-Pierre Meevasana Worawat Moore Rob
G. Lu Donghui Yao Hong Yoshida Yoshiyuki Eisaki Hiroshi Devereaux Thomas
P. Hussain Zahid Shen Zhi-Xun Hashimoto, Makoto. Particle–hole symmetry
breaking in the pseudogap state of bi2201. Nature Physics, 6:414–418, 2010.
[9] Rui-Hua He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P.
Testaud, V. Nathan, Y. Yoshida, Hong Yao, K. Tanaka, W. Meevasana, R. G.
Moore, D. H. Lu, S.-K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux,
S. A. Kivelson, J. Orenstein, A. Kapitulnik, and Z.-X. Shen. From a single-band
metal to a high-temperature superconductor via two thermal phase transitions.
Science, 331(6024):1579–1583, 2011.
[10] Satoshi Kashiwaya, Yukio Tanaka, Masao Koyanagi, and Koji Kajimura. Theory
for tunneling spectroscopy of anisotropic superconductors. Phys. Rev. B, 53:2667–
2676, Feb 1996.
[11] Patrick A. Lee. Amperean pairing and the pseudogap phase of cuprate supercon-
ductors. Phys. Rev. X, 4:031017, Jul 2014.
[12] Jian-Xin Li, Chung-Yu Mou, and T. K. Lee. Consistent picture for resonance-
neutron-peak and angle-resolved photoemission spectra in high-Tc superconduc-
tors. Phys. Rev. B, 62:640–643, Jul 2000.
[13] Yasunari Tanuma, Yukio Tanaka, Masao Ogata, and Satoshi Kashiwaya. Theory
of local density of states of dx2−y2 -wave superconducting state near the surfaces of
the t-J model. Journal of the Physical Society of Japan, 67(4):1118–1121, 1998.
[14] Menke U. Ubbens and Patrick A. Lee. Flux phases in the t-j model. Phys. Rev. B,
46:8434–8439, Oct 1992.
[15] I M Vishik, W S Lee, R-H He, M Hashimoto, Z Hussain, T P Devereaux, and Z-X
Shen. ARPES studies of cuprate fermiology: superconductivity, pseudogap and
quasiparticle dynamics. New Journal of Physics, 12(10):105008, oct 2010.
[16] Ching-Long Wu, Chung-Yu Mou, and Darwin Chang. Effects of spin fluctuations
on the tunneling spectroscopy in high-Tc superconductors. Phys. Rev. B, 63:172503,
Apr 2001.
42
[17] Shin-Tza Wu and Chung-Yu Mou. Zero-bias conductance peak in tunneling spec-
troscopy of hybrid superconductor junctions. Phys. Rev. B, 67:024503, Jan 2003.
[18] Tao Xiang and Congjun Wu. D-wave Superconductivity. Cambridge University
Press, 2022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *