帳號:guest(18.219.40.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王榆惠
作者(外文):Wang, Yu-Hui
論文名稱(中文):利用MESA模擬Ia型超新星的紅巨星伴星形成系統與倖存伴星的預測
論文名稱(外文):Modeling the symbiotic channel of Type Ia supernova progenitor system with MESA and the prediction of surviving companions
指導教授(中文):潘國全
指導教授(外文):Pan, Kuo- Chuan
口試委員(中文):楊湘怡
朱有花
口試委員(外文):Yang, Hsiang-Yi
Chu, You-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022533
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:29
中文關鍵詞:Ia型超新星雙星系統倖存伴星紅巨星伴星系統形成系統
外文關鍵詞:Type Ia supernovabinaryMESAFLASHsurviving companionsymbiotic channelprogenitor system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Ia 型超新星已廣被認為是雙星系統中碳氧白矮星的熱核爆炸,然而確切的演化系
統還尚未明朗。在本篇論文中,我們重新將Hachisu 的可見光厚風和質量剝奪模型運
用在最先進的開源恆星演化程式MESA,得到一以紅巨星與白矮星的雙星系統作為Ia 型
超新星的形成系統。我們的結果在低初始紅巨星質量的條件下,與Hachisu的結果有
高度一致性,而在較高的初始紅巨星質量中,我們發現紅巨星伴星會演化成漸近巨星
支(AGB)星,且隨著初始軌道週期增長可能進入熱脈衝階段。Hachisu的結果並沒有顯
示這些漸近巨星支階段的伴星,這可能是因為MESA的模擬擁有成長更快的氦核。
此外,我們利用FLASH程式模擬二維流體力學模型,探討Ia型超新星爆炸對我們的
紅巨星與白矮星的雙星系統可能造成的衝擊和影響。我們發現在超新星爆炸期間,無論
原本的結構如何,紅巨星表面的氫氣層皆會完全被破壞。而後透過MESA剝去紅巨星表
面的氫氣層,模擬倖存伴星的長期演化,並發現可以藉由在爆炸前的伴星狀態將倖存伴
星的演化路徑分類成三種主要的類型。
It is widely accepted that Type Ia supernovae (SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs(WDs) in binary systems. However, the exact evolutionary scenarios remain unclear. In this project, we implement the optically thick wind model with mass stripping effect from Hachisu et al. (1999) for a symbiotic channel as Type Ia supernova progenitors into the open-source, state-of-the-art, stellar evolution code MESA(Modules for Experiments in Stellar Astrophysics). Our results show consistent evolution histories for binary systems consisting of a carbon-oxygen white dwarf and a red giant (RG) companion, with low initial RG mass. For high initial RG mass cases, we find that the RG companions could evolve to asymptotic giant branch (AGB)-like stages with or without thermal-pulsing (TP), depending on the initial orbital period. These AGB-like companions
are not appeared in Hachisu et al. (1999) due to a faster-growing helium core in MESA.
Furthermore, we investigate the impact of SN Ia explosion on the binary companions from our symbiotic systems via two-dimensional hydrodynamics simulations using the FLASH code. We find that the hydrogen envelopes of the RG companions are completely destroyed during the supernova explosion, regardless the initial configurations. The long-term subsequent evolution of surviving companions are conducted in MESA by removing the hydro-
gen envelope of a companion based on our binary calculations. Three major populations of surviving companions are found and can be categorized by whether the pre-explosion companion has a helium core or a carbon-oxygen core and with or without TP.
1 Introduction and Literature Review 1
2 Model and Methodology 2
2.1 Binary stellar evolution with MESA . . . 3
2.2 SNe Ia explosion with FLASH . . . 6
2.2.1 Resolution of FLASH . . . 6
2.2.2 Hydrostatic equilibrium of RG companions . . . 6
2.2.3 SNe Ia Explosion model . . . 7
2.3 Heating and long-term evolution with MESA . . . 8
3 Results 9
3.1 The progenitor systems . . . 9
3.1.1 Evolutionary track . . . 10
3.1.2 Parameter space . . . 11
3.1.3 Populations . . . 12
3.2 Impact of SN ejecta on RG companions . . . 15
3.3 Long-term evolution of surviving companions . . . 18
3.3.1 Heating on the surviving companions . . . 18
3.3.2 Luminosity evolutionary path . . .19
3.3.3 HR diagram . . . 23
4 Discussion 24
4.1 The effect of mass loss rate to the RG companions in MESA . . . 25
4.2 The remaining envelope of surviving companions . . . 25
5 Conclusions 27
Reference 28
[1] Branch, D. & Tammann, G. A. 1992, ARA&A, 30, 359.
[2] Whelan J., Iben I., 1973, ApJ, 186, 1007
[3] Iben, I., Jr., & Tutukov, A. V. 1984, ApJS, 54, 335
[4] Nomoto, K., Thielemann, F.-K., & Yokoi, K. 1984, ApJ, 286, 644
[5] Webbink, R. F. 1984, ApJ, 277, 355
[6] Branch, D., Livio, M., Yungelson, L. R., Boffi, F. R., & Baron, E. 1995,PASP, 107, 717
[7] Wu, C., Liu, D., Wang, X., & Wang, B. 2021, arXiv:2102.09326
[8] Wang, B., Li, X.-D., & Han, Z. 2010, MNRAS, 401, 2729
[9] Wong, T. L. S., & Schwab, J. 2019, ApJ, 878, 100,doi: 10.3847/1538-4357/ab1b49
[10] Wang, B., Meng, X., Chen, X., et al. 2009, MNRAS, 395, 847
[11] Iben Icko J., Livio M., 1993, PASP, 105, 1373
[12] Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ, 470, L97 (HKN96)
[13] Hachisu, I., Kato, M., Nomoto, K., 1999, ApJ, 522, 487
[14] Pan, K.-C., Ricker, P. M., & Taam, R. E. 2012, ApJ, 750, 151.doi:10.1088/0004-637X/750/2/151
[15] Pan, K.-C., Ricker, P., Taam, R. E. 2013, ApJ, 773, 49
[16] Liu, Z.-W., Kromer, M., Fink, M., et al. 2013, ApJ, 778, 121.
[17] Pan, K.-C., Ricker, P., & Taam, R. E. 2014, ApJ, 792, 71
[18] Zeng, Y., Liu, Z.-W., & Han, Z. 2020, ApJ, 898, 12.
[19] Chiotellis, A.,Schure, K.M., & Vink, J. 2012, A&A, 537, A139
[20] Ruiz-Lapuente, P. 2019, NewAR, 85, 101523
[21] Maeda K., Kutsuna M., & Shigeyama T., 2014, ApJ, 794, 37
[22] Marietta E., Burrows A. Fryxell B., 2000, Apjs, 128, 615
[23] Rau, S.-J., Pan, K.-C. 2022 arXiv:2205.13670
[24] Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P. et al. 2011, apjs, 192, 3
[25] Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L. et al. 2015, apjs, 220, 15
[26] Webbink, R. F., Rappaport, S., & Savonije, G. J. 1983, ApJ, 270, 678
[27] Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
[28] Dubey, A., Reid, L. B., & Fisher, R. 2008, Physica Scripta Volume T, 132, 014046
[29] Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501
[30] Timmes, F. X. & Arnett, D. 1999, ApJS, 125, 277
[31] Couch, S. M., Graziani, C., & Flocke, N. 2013, ApJ, 778, 181.
doi:10.1088/0004-637X/778/2/181
[32] Abate, C. 2017 MmSAI, 88, 308A
[33] Shappee, B. J., Kochanek, C. S., & Stanek, K. Z. 2013, ApJ, 765, 150
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *