帳號:guest(3.135.186.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏正雄
作者(外文):Wei, Cheng-Hsiung
論文名稱(中文):非線性與自洽TM模態磁旋管的模擬與分析
論文名稱(外文):Simulation and Analysis for Nonlinear and self-consistent TM-mode gyrotrons
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):朱國瑞
姚欣佑
陳仕宏
洪健倫
口試委員(外文):Chu, Kwo-Ray
Yao, Hsin-Yu
Chen, Shih-Hung
Hung, Chien-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022522
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:60
中文關鍵詞:磁旋後退波振盪器橫向磁場模態磁旋管非線性交互作用振盪器磁旋管
外文關鍵詞:gyro-BWOTM-mode-gyrotronsnonlinear-interactionoscillatorsgyrotrons
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磁旋管(gyrotron)是在毫米波與太赫茲頻段的高功率波源系統,而過去的磁旋管研究主要都集中於TE模態(軸向電場為零),因為從特徵模態可以看出,當操作在接近截止頻率區域時,橫向磁場趨會近於零,因此對於軸向電子速度的調製幾乎是零,也就是只需要考慮橫向聚束機制即可,也因為沒有聚束機制的競爭,其可以產生比較單純的高功率波源。
對於TM 模態(軸向磁場為零)磁旋管,即使操作在接近截止頻率區域,因為軸向電場的存在,導致其軸向聚束機制與橫向聚束機制都會存在,而過去大家都認為這兩種聚束機制永遠都會是互相競爭的,進而導致能量轉換效率會很差;另外TM 模態因為軸向電場與橫向磁場都會對軸向速度造成影響,因此很容易會出現嚴重的速度逸散,這也會導致效率的下降,這兩個主要的原因,導致過去認為TM模態並不適合做為磁旋管的操作條件[8-14]。
然而經過我們實驗室最近的聚束研究分析發現,當操作在後退波時,TM模態的兩種聚束機制作用會互相合作[8,10],與過去的結論並不相同,且經過小訊號模型計算的起振電流也顯示了TM模態的可行性[9,11],甚至經過非線性定場的模擬發現操作在後退波的情況下,TM11與TE01展現出一樣好的結果[11],以上的種種結果都證明了,TM模態是個與TE模態相同有競爭力的磁旋管系統,另外在日本福井大學的實驗中[15]發現有非TE模態的訊號出現,這些不確定的模態,很有可能就是過去不夠了解的TM模態,為此TM模態的模擬與分析對於整個磁旋管系統的完整性與重要性不言而喻。
在此篇論文我們將會介紹TM模態非線性且自洽系統的波動方程式與電子運動方程式的推導過程,接著利用得到的這些耦合的微分方程式來進行非線性且自洽的模擬,透過對均勻結構的模擬結果分析,我們可以研究其中的能量交換機制,與其背後的物理概念,接著利用我們分析出的物理機制來設計優化我們的模擬結構,最後我們成功實現三種優化的極限: 在W-band具有6GHz的高頻寬操作、最高效率超過50%的高效率操作以及操作電壓只需要2kV的超低電壓操作,配合我們對TM01的模擬結果,我們可以宣稱此磁旋管系統模擬是一個具泛用性且嚴謹的模擬系統。
Gyrotrons have been regarded as high-power sources of millimeter and terahertz waves. The previous researches about gyrotrons are mainly forced on TE-mode gyrotrons, whose axial magnetic field is equal to zero ( ). When operating at near-cutoff of TE-mode, the axial electric field is approximately zero and the azimuthal bunching dominate the system. As a result of no bunching competition, TE-mode gyrotrons can generate high power radiation.

For TM-mode gyrotrons, the existence of axial electric field can induce both of the bunching mechanisms process through the relativistic effect. Traditional understanding usually expect these two bunching mechanisms would always compete with each other, which would lead to reduction of interaction efficiency. Besides, for TM-mode both axial electric field and azimuthal magnetic field would modulate axial velocity of electrons and induce serious velocity spread, which will also reduce the efficiency of gyrotrons. These two primary reasons lead to the inappropriate operation of TM-mode gyrotrons in previous understanding [8-14].

However, by the recent study of bunching mechanisms the axial bunching and azimuthal bunching can cooperate with each other under the backward operation [8,10], which is contradictory with the previous believing. Besides, the research of starting current behavior confirm the feasibility of TM-mode gyrotrons [9,11]. In the results of nonlinear and fixed field simulation [11], the linear gain and bandwidth of the TM11-mode gyrotron are as good as those of TE01-mode gyrotron [9,11]. Also, in the experiments [15], many non-TE mode oscillations have been observed in the overmoded interaction structures. Those unidentified peaks might be the evidence of TM-mode. All the result above shows that the TM-mode is competitive with respect to TE-mode gyrotrons. As a result, for the completion of gyrotrons system, the simulation and analysis of TM-mode is obviously very important and necessary.

This work develops a nonlinear and self-consistent framework for the single-mode simulation of TM-mode gyrotrons. Together with the electrons’ equations of motion, particle tracing simulation is conducted to model TM-mode oscillation. For a uniform
Structure, its beam-current, beam-voltage, and pitch-factor tuning properties are investigated under different magnetic fields. By optimizing the interaction structure of the proposed gyrotron backward-wave oscillator (gyro-BWO), three outstanding optimization limits are conducted. In first operation, the maximum frequency tuning range is more than 6 GHz at the pitch factor of 1.5 in the W-band. Second, The peak efficiency can be reached higher than 50%. in third operation, we need only 2-kilovolte to get more than 10% efficiency. These special features may facilitate the development of low-cost and compact gyrotron systems and show great potential in the applications for TM-mode gyro-BWOs.
摘要 I
Abstract III
致謝 V
目錄 VI
圖表目錄 VII
一、緒論 1
1.1兆赫波與次毫米波簡介 1
1.2 電子迴旋脈射 2
1.3 能量交換機制-聚束(bunching) 2
1.4 磁旋管的總類 4
1.5 論文概述 5
二、非線性理論 6
2.1 波動方程式 6
2.2 電子運動方程式 19
2.3 優化模擬方式 36
三、TM11 非線性且自洽系統模擬 38
3.1 色散曲線與耦合常數 38
3.2 TM11 均勻結構的參數調整 39
3.2.1 一維參數測試: 磁場+頻率 39
3.2.2 二維參數測試: 電流+磁場 41
3.2.3 二維參數測試: 電壓+磁場 43
3.2.4 二維參數測試: 縱速比( )+磁場 45
3.2.5 二維參數測試: 速度逸散+磁場 47
3.3 緩變結構模擬 49
3.3.1 高頻寬結構-一維磁場掃頻 49
3.3.2 高頻寬結構-電壓磁場掃頻 51
3.3.3 高效率結構 52
3.3.4 低電壓結構 53
四、TM01 非線性且自洽系統模擬 54
4.1 二維參數測試: 電流+磁場 55
4.2 二維參數測試: 縱速比+磁場 56
4.3 二維參數測試: 電壓+磁場 57
五、結論 58
六、參考資料: 59

[1] K. R. Chu, Rev. Mod. Phys. 76, 489 (2004).
[2] G. S. Nusinovich, Introduction to the Physics of Gyrotrons (JHU Press, 2004).
[3] M. Thumm, J. Infrared Millim. THz Waves 41, 1 (2020).
[4] G. S. Nusinovich, M. K. Thumm, and M. I. Petelin, J. Infrared Millim. THz Waves 35, 325 (2014).
[5] K. R. Chu and J. L. Hirshfield, Phys. Fluids 21, 461 (1978).
[6] W. C. Tsai, T. H. Chang, N. C. Chen, K. R. Chu, H. H. Song, and N. C. Luhmann, Jr. Phys. Rev. E 70, 056402(2004)
[7] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang. Phys. Rev. Lett. 81, 4760(1998)
[8] T. H. Chang, W. C. Huang, H. Y. Yao, C. L. Hung, W. C. Chen, and B. Y. Su, Phys. Plasmas 24, 023302 (2017).
[9] H. Y. Yao, C. C. Chen, and T. H. Chang, Phys. Plasmas 27,022113 (2020).
[10] T. H. Chang, H. Y. Yao, B. Y. Su, W. C. Huang, and B. Y. Wei, Phys. Plasmas 24, 122109 (2017).
[11] T. H. Chang and K. J. Xu, Phys. Plasmas 25, 112109 (2018).
[12] I. E. Botvinnik, V. L. Bratman, G. G. Denisov, and M. M.Ofitserov, Pis’ma Zh. Tekh. Fiz. 10, 792 (1984) [Sov. Tech.Phys. Lett. 10, 332 (1984)].
[13] E. Ott and W. M. Manheimer, IEEE Trans. Plasma Sci. 3, 1(1975).
[14] V. L. Bratman, Elektron. Tekh., Ser. I, Elektronika SVCH, 92(1974).
[15] T. Idehara, J. C. Mudiganti, L. Agusu, T. Kanemaki, I. Ogawa, T. Fujiwara, Y. Matsuki, and K. Ueda, J. Infrared, Millimeter, Terahertz Waves 33, 724 (2012).
[16] W. C. Huang, National Tsing Hua University, 2015.
[17] Bo-Yuan Su, Self-consistent Nonlinear Simulation for W-band TM11 Mode Gyrotron ,National Tsing Hua University, 2016.
[18] Bo-Yuan Wei, Nonlinear and self-consistent simulation of TM-mode gyrotrons, National Tsing Hua University, 2018.
[19] Kun-Jie Xu, 色散曲線 Relation of TM-mode Gyrotron, National Tsing Hua University, 2018.
[20] Chia-Hao Tsai, TM-mode gyrotron bunching points and CST simulation, National Tsing Hua University, 2018.
[21] K. R. Chu, H.-Y. Chen, C.-L. Hung, T.-H. Chang, L. R. Barnett, S.-H. Chen, T.-T. Yang, and D. J. Dialetis, IEEE Trans. Plasma Sci. 27, 9).
[22] Chen, Chih-Chieh, Starting current of TM-mode Gyrotrons, National Tsing Hua University, 2019.
[23] C. Q. Jiao, J. R. Luo, and Ieee, A gyrotron backward wave oscillator operating in the TM11 mode with large-orbit electron beam 2007), Eighth Ieee International Vacuum Electronics Conference.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *