帳號:guest(18.225.195.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃仁君
作者(外文):Huang, Jen-Chun
論文名稱(中文):以微波噴霧腔體加速生質柴油之酯化反應研究
論文名稱(外文):Microwave-Accelerated Esterification of Biodiesel with Spraying Reactor
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):趙賢文
汪上曉
李義發
王明瑞
口試委員(外文):Chao, Hsien-Wen
Wong, Shang-Hsiao
Lee, Yih-Fa
Wang, Ming-Rui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022511
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:36
中文關鍵詞:微波噴霧生質柴油
外文關鍵詞:microwavespraybiodiesel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:348
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要在探討如何將微波與噴霧技術作結合,以加速生質柴油預處理中的酯化反應。
目前已經有許多研究指出,使用微波作為加熱源可以有效提升酯化反應及轉酯化反應的反應速率,而如何使微波加速反應有更多應用,且進一步提高酯化反應的反應速率是本研究的重點。
本研究承襲先前實驗室的經驗,將原先的微波攪拌式腔體更改成噴霧式來讓反應物霧化,並使反應腔拉長以增加微波作用的面積及時間,進而增加微波對於加速酯化反應的影響;且根據勒特沙列原理,移除酯化反應中副生成物的水會使反應趨向朝右反應。而藉由噴霧將過程中所生成的水霧化於腔體內,並利用水對於微波有良好的吸收性,藉由微波的導入提供水熱源蒸發成水蒸汽,再使用抽氣系統將內部的水蒸氣快速移除,以提高反應速率。除此之外本研究亦參考其他物理及化學的方式,以進一步提高反應速率。
本研究分別以傳統加熱設備、微波攪拌式腔體及微波噴霧式腔體在不同溫度下進行酯化實驗,在沒有添加催化劑的情況下,反應速率最高能有1.94倍的成長;反應時間則能減少至一半。而若固定反應時間,則可以使操作溫度下降20度以達到節能的效果。除此之外,本研究也以鐵作為催化劑並結合了場強化方法嘗試進一步提高反應速率,最高可以有3.8倍的提升。並在過程中,探討了微波在中間所扮演的角色,了解微波與噴霧技術對於提升反應速率的影響。
This research aims to combine the microwave and spray technology to accelerate the esterification reaction in biodiesel pretreatment.
Nowadays, many researched have indicated that the use of microwave is able to enhance the reaction rate of esterification and transesterification. Therefore, how to expand the application for microwave-accelerated reaction and further increase the reaction rate for esterification are the subjects of this study.
Following the experience before, we changed the microwave reactor from stirring type to spray type to atomize the reactants and extended the length of the reactor to increase the interacting area and time with microwave. Moreover, according to the Le Chatelier principle, removing the by-product, which is water, can make the reaction tend react to the right hand side. Thus, when the water is atomized in the reactor by spray system, it is able to be vapored by microwave because water can absorb the microwave well. And then the vapor is quickly removed by the vacuum system to enhance the reaction rate. In addition, this research also refers to other physical and chemical methods to further improve the reaction rate.
The esterification experiments were carried out at different temperatures with traditional heating equipment, microwave stirring reactor and microwave spray reactor respectively without catalyst. The reaction rate can be increased by a maximum of 1.94 times and the reaction time can be reduced to half. Besides, the operating temperature can be lowered by 20°C for energy saving under a fixed reaction time. In addition, iron was introduced as a catalyst and combined with the field enhancement method to further increase the reaction rate, up to 3.8 times. Through these experiments, we discussed the role of the microwave in the reaction and try to understand the influence of microwave and spray technology on improving the reaction rate.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
一、緒論 1
1.1 前言 1
1.2 生質柴油的製程介紹 2
1.3 微波 5
1.3.1 微波簡介 5
1.3.2 微波加熱 5
二、腔體設計 7
2.1 腔體模擬 7
2.2 第一代腔體 7
2.2.1 腔體設計 7
2.2.2 腔體討論 9
2.3 第二代腔體 10
2.3.1 腔體設計 10
2.3.2 腔體討論 13
2.4 第三代腔體 13
2.4.1 第一版腔體設計 13
2.4.2 第一版腔體討論 15
2.4.3 第二版腔體設計 16
2.4.4 第二版腔體討論 18
2.4.5 第三版腔體設計 18
2.4.6 第三版腔體討論 20
三、實驗方法與設備 20
3.1 實驗設備 20
3.1.1 傳統實驗設備 20
3.1.2 微波實驗設備 21
3.1.3 噴霧實驗設備 23
3.2 實驗方法 24
3.2.1 實驗原理 24
3.2.2 實驗原料 25
3.2.3 分析方法 25
3.3 實驗條件 27
3.3.1 腔體比較 27
3.3.2 微波與噴霧 27
3.3.3 電場強化法與鐵催化 28
四、實驗結果與分析 29
4.1 腔體比較 29
4.2 微波與噴霧 31
4.3 電場強化法與鐵催化 32
五、結論 34
六、參考資料 35

[1] Gole, Vitthal L., and Parag R. Gogate. "Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound." Fuel Processing Technology 106 (2013): 62-69.
[2] Kim, Daeho, et al. "Accelerated esterification of free fatty acid using pulsed microwaves." Bioresource technology 102.14 (2011): 7229-7231.
[3] Kim, Daeho, et al. "Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst." Bioresource technology 102.3 (2011): 3639-3641.
[4] El Sherbiny, Shakinaz A., Ahmed A. Refaat, and Shakinaz T. El Sheltawy. "Production of biodiesel using the microwave technique." Journal of Advanced Research 1.4 (2010): 309-314.
[5] Chen, Kang-Shin, et al. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system." Energy 38.1 (2012): 151-156.
[6] Barnard, T. Michael, et al. "Continuous-flow preparation of biodiesel using microwave heating." Energy & Fuels 21.3 (2007): 1777-1781.
[7] Patil, Prafulla D., et al. "Microwave-assisted catalytic transesterification of camelina sativa oil." Energy & Fuels 24.2 (2009): 1298-1304.
[8] Suppalakpanya, K., S. B. Ratanawilai, and C. Tongurai. "Production of ethyl ester from crude palm oil by two-step reaction with a microwave system." Fuel 89.8 (2010): 2140-2144.
[9] Azcan, Nezihe, and Aysegul Danisman. "Microwave assisted transesterification of rapeseed oil." Fuel 87.10-11 (2008): 1781-1788.
[10] Lertsathapornsuk, V., et al. "Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator." Fuel Processing Technology 89.12 (2008): 1330-1336.
[11] Zhang, Su, et al. "Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst." Bioresource technology 101.3 (2010): 931-936.
[12] Yuan, H., B. L. Yang, and G. L. Zhu. "Synthesis of biodiesel using microwave absorption catalysts." Energy & Fuels 23.1 (2008): 548-552.
[13] Azcan, Nezihe, and Elif Demirel. "Obtaining 2-octanol, 2-octanone, and sebacic acid from castor oil by microwave-induced alkali fusion." Industrial & Engineering Chemistry Research 47.6 (2008): 1774-1778.
[14] Hernando, J., et al. "Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes." Fuel 86.10-11 (2007): 1641-1644.
[15] Azcan, Nezihe, and Aysegul Danisman. "Alkali catalyzed transesterification of cottonseed oil by microwave irradiation." Fuel 86.17-18 (2007): 2639-2644.
[16] Leadbeater, Nicholas E., and Lauren M. Stencel. "Fast, easy preparation of biodiesel using microwave heating." Energy & Fuels 20.5 (2006): 2281-2283.
[17] Patil, Prafulla, et al. "Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions." Chemical Engineering Journal 168.3 (2011): 1296-1300.
[18] Nagahata, Ritsuko, et al. "Microwave-Assisted Facile and Rapid Esterification of Amino Acids I: Esterification of L-Leucine from Batch to Flow Processes and Scale-Up." Natural Science 9.4 (2017): 110-122.
[19] Rajabi F., Abdollahi M. and Luque R. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst. Materials 9, 557 (2016)
[20] Rajabi F., Arancon R. A.D. and Luque R. Oxidative esterification of alcohols and aldehydes using supported iron oxide nanoparticle catalysts. Catalysis Communications 59, 101-103 (2015)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *