帳號:guest(18.118.128.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):金育琳
作者(外文):Jin, Yu-Lin
論文名稱(中文):RuI3雙層的磁性與拓樸
論文名稱(外文):The Magnetism and Topology of RuI3 Bilayer
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):徐斌睿
鄭澄懋
口試委員(外文):Hsu, Pin-Jui
Cheng, Cheng-Maw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022505
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:量子反常霍爾效應陳絕緣體第一原理VASPWannier 90Wannier tool
外文關鍵詞:Anomalous quantum Hall effectChern InsulatorFirst PrincipleVASPWannier 90Wannier tool
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
量子力學給予我們在微觀尺度的物理圖像,讓我們了解古典物理所無法解釋 的現象,像是波粒二象性等,我們可以藉由解決薛丁格方程的解來描述物質的行 為。然而,對於固態的多電子問題十分難解,因此直到 1970 年代,密度泛函理論 的發展成熟,才得以開拓量子化學計算等第一原理的研究。
本篇碩論將改變堆積排序來研究堆積排序對 RuI3 雙層的鐵磁性的影響,再 者,調控雙層間距來模擬單軸壓力對鐵磁性的影響。另一方面,在引入 SOC 後, 我們發現了 SOC 誘發的絕緣能隙,因此我們也進行了拓樸絕緣體的研究,發現藉 由改變堆積排序,可以得到至多 C = −1 的陳絕緣體 (Chern insulator) 且在一個高 對稱性平移方向,發現多個排序有 C = −1 的拓樸態。除此之外,我們藉由壓縮 的雙軸應變發現至多 C = −2 的陳絕緣體。
Quantum mechanics gives us a picture of physics at the microscopic scale, allow- ing us to understand phenomena that classical physics cannot explain, such as wave- particle duality, etc. We can describe the behavior of matter by solving the solution of the Schrödinger equation. However, the many-body problem is very difficult to solve, so it was not until the 1970s that the development of density functional theory matured, and it was possible to open up first-principles research such as quantum chemical calculations.
This master thesis will change the stacking order to study the effect of the stacking order on the ferromagnetism of RuI3 bilayers, and then adjust the bilayer spacing to sim- ulate the effect of uniaxial pressure on the ferromagnetism. On the other hand, after the introduction of SOC, we found the insulating energy gap induced by SOC, so we also con- ducted research on topological insulators and found that by changing the stacking order a Chern insulator with C=-1 can be obtained,and in a high-symmetry translation direction multiple topological states with C=-1 are found. In addition, we find Chen insulators up to C=-2 by compressive biaxial strain.
一、引言 .................1
二、計算方法與理論 .........2
三、DFT+U ................10
四、磁交互作用 .............14
五、拓樸絕緣體 .............20
六、霍爾效應 ...............28
七、瓦尼爾函數與陳數 .........42
八、計算細節 ................53
九、RuI3雙層的AB堆積結構 .....54
十、RuI3雙層的鐵磁性 .........56
十一、RuI3雙層的拓樸 .........68
十二、總結 ..................87
參考文獻 ....................88
附件 .......................97
[1] A. Abouzaid, J. Dai, S. Feiler, P. Kessler, and C. Waddell. The integer quantum hall effect, s.d.
[2] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, Sep 1988.
[3] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari. Exponential localization of wannier functions in insulators. Phys. Rev. Lett., 98(4):046402, 2007.
[4] K. S. Burch, D. Mandrus, and J.-G. Park. Magnetism in two-dimensional van der waals materials. Nature, 563:47–52, 2018.
[5] K. Buschow, A. van Diepen, and H. de Wijn. Evidence for RKKY-type interaction in intermetallics, as derived from magnetic dilution of GdPdIn with Y or Th. Solid State Communications, 12(5):417–420, 1973.
[6] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45:566–569, Aug 1980.
[7] S. Chern. On the Curvatura Integra in a Riemannian Manifold. Ann. of Math. (2), pages 674–684, 1945.
[8] M. Cococcioni. The LDA + U Approach : A Simple Hubbard Correction for Corre- lated Ground States. 2012.
[9] J. M. Coey. Magnetism and magnetic materials. Cambridge university press, 2010.
[10] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563(7729):94–99, 2018.
[11] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Math. Proc. Cambridge Philos. Soc., 26(3):376–385, 1930.
[12] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sut- ton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 57:1505–1509, Jan 1998.
[13] D. Fiorenza, D. Monaco, and G. Panati. Construction of real-valued localized com- posite wannier functions for insulators. In Annales Henri Poincaré, volume 17, pages 63–97. Springer, 2016.
[14] T. Fukui, Y. Hatsugai, and H. Suzuki. Chern numbers in discretized brillouin zone: Efficient method of computing (spin) hall conductances. J. Phys. Soc. Japan, 74(6):1674–1677, jun 2005.
[15] C.Gong,L.Li,Z.Li,H.Ji,A.Stern,Y.Xia,T.Cao,W.Bao,C.Wang,Y.Wang,etal. Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals. Nature, 546(7657):265–269, 2017.
[16] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132(15), 04 2010. 154104.
[17] E. H. Hall. Xviii. on the“rotational coefficient"in nickel and cobalt. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(74):157– 172, 1881.
[18] X. He, N. Helbig, M. J. Verstraete, and E. Bousquet. TB2J: A python package for computing magnetic interaction parameters. Comput. Phys. Commun., 264:107938, 2021.
[19] B. Himmetoglu, A. Floris, S. De Gironcoli, and M. Cococcioni. Hubbard-corrected DFT energy functionals: The LDA+ U description of correlated systems. Int. J. Quantum Chem., 114(1):14–49, 2014.
[20] C. Hodges. Quantum corrections to the Thomas-Fermi approximation—the Kirzh- nits method. Can. J. Phys., 51(13):1428–1437, 1973.
[21] B. Huang, G. Clark, E. Navarro-Moratalla, and et al. Layer-dependent ferromag- netism in a van der waals crystal down to the monolayer limit. Nature, 546:270–273, 2017.
[22] C. Huang, J. Zhou, H. Wu, K. Deng, P. Jena, and E. Kan. Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys. Rev. B, 95(4):045113, 2017.
[23] Z. Jiang, P. Wang, J. Xing, X. Jiang, and J. Zhao. Screening and design of novel 2d ferromagnetic materials with high curie temperature above room temperature. ACS Applied Materials & Interfaces, 10(45):39032–39039, 2018.
[24] J. Jung, E. Laksono, A. M. DaSilva, A. H. MacDonald, M. Mucha-Kruczyński, and S. Adam. Moiré band model and band gaps of graphene on hexagonal boron nitride. Phys. Rev. B, 96(8):085442, 2017.
[25] H.-J. Kim. VASPBERRY, Aug. 2018.
[26] H.-S. Kim, A. Catuneanu, H.-Y. Kee, et al. Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B, 91(24):241110, 2015.
[27] H.-S.KimandH.-Y.Kee.Crystalstructureandmagnetisminα-RuCl3:Anabinitio study. Phys. Rev. B, 93(15):155143, 2016.
[28] A. Kitaev. Anyons in an exactly solved model and beyond. Ann. Phys., 321(1):2– 111, jan 2006.
[29] M. Kohgi, T. Satoh, K. Ohoyama, and M. Arai. Competition between the Kondo effect and RKKY interactions in CeSix. Physica B Condens, 169(1):501–502, 1991.
[30] A.Koitzsch,C.Habenicht,E.Müller,M.Knupfer,B.Büchner,H.C.Kandpal,J.Van Den Brink, D. Nowak, A. Isaeva, and T. Doert. J eff description of the honeycomb mott insulator α- RuCl3. Phys. Rev. Lett., 117(12):126403, 2016.
[31] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47:558–561, Jan 1993.
[32] J. L. Lado and J. Fernández-Rossier. On the origin of magnetic anisotropy in two dimensional CrI 3. 2D Mater., 4(3):035002, jun 2017.
[33] C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation- energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, Jan 1988.
[34] J. Lee, Z. Wang, H. Xie, K. F. Mak, and J. Shan. Valley magnetoelectricity in single- layer MoS2. Nature materials, 16(9):887–891, 2017.
[35] X. Li and J. Yang. Realizing two-dimensional magnetic semiconductors with en- hanced curie temperature by antiaromatic ring based organometallic frameworks. Journal of the American Chemical Society, 141(1):109–112, 2019.
[36] A. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. Phys. Rev. B, 52(8):R5467, 1995.
[37] C.-X. Liu, S.-C. Zhang, and X.-L. Qi. The quantum anomalous hall effect: theory and experiment. Annu. Rev. Conden. Ma. P., 7:301–321, 2016.
[38] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt. Maximally localized wannier functions: Theory and applications. Rev. Mod. Phys., 84:1419– 1475, Oct 2012.
[39] M. Meinert, J.-M. Schmalhorst, and G. Reiss. Exchange interactions and curie tem- peratures of Mn2CoZ compounds. J. Phys. Condens, 23(11):116005, mar 2011.
[40] S. Meng. Integer quantum hall effect. Proseminar in Theoretical Physics. Zurich: Departement Physik ETH Zurich, page 25, 2018.
[41] M. Nasir, S. Kumar, N. Patra, D. Bhattacharya, S. N. Jha, D. R. Basaula, S. Bhatt, M. Khan, S.-W. Liu, S. Biring, and S. Sen. Role of antisite disorder, rare-earth size, and superexchange angle on band gap, curie temperature, and magnetization of r2nimno6 double perovskites. ACS Appl. Electron. Mater, 1(1):141–153, 2019.
[42] D. Ni, X. Gui, K. M. Powderly, and R. J. Cava. Honeycomb-structure RuI3, a new quantum material related to α-RuCl3. Adv. Mater., 34(7):2106831, 2022.
[43] G. Oliver and J. Perdew. Spin-density gradient expansion for the kinetic energy. Phys. Rev. A, 20(2):397, 1979.
[44] G. Panati and A. Pisante. Bloch bundles, marzari-vanderbilt functional and maxi- mally localized wannier functions. Comm. Math. Phys., 322(3):835–875, 2013.
[45] R. G. Parr. Density functional theory of atoms and molecules. In Horizons of quantum chemistry, pages 5–15. Springer, 1980.
[46] J.P.Perdew,K.Burke,andM.Ernzerhof.Generalizedgradientapproximationmade simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.
[47] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46:6671–6687, Sep 1992.
[48] J. P. Perdew, J. Tao, V. N. Staroverov, and G. E. Scuseria. Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional. J. Chem. Phys., 120(15):6898–6911, 03 2004.
[49] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Giber- tini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter, 32(16):165902, jan 2020.
[50] K. Plumb, J. Clancy, L. Sandilands, V. V. Shankar, Y. Hu, K. Burch, H.-Y. Kee, and Y.-J. Kim. ”α-RuCl3: A spin-orbit assisted mott insulator on a honeycomb lattice”. Phys. Rev. B, 90(4):041112, 2014.
[51] D. M. Polishchuk, M. Persson, M. M. Kulyk, E. Holmgren, G. Pasquale, and V. Ko- renivski. Tuning thermo-magnetic properties of dilute-ferromagnet multilayers using RKKY interaction. Appl. Phys. Lett, 117(2), 07 2020. 022402.
[52] I. Pollini. Electronic properties of the narrow-band material α-RuCl3. Phys. Rev. B, 53(19):12769, 1996.
[53] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang. Topological quantization of the spin Hall ef- fect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 74(8):085308, 2006.
[54] N. Samarth. Magnetism in flatland. Nature, 546:216–217, 2017.
[55] R. Shankar. Principles of quantum mechanics. Springer Science & Business Media, 2012.
[56] N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao. Stacking-dependent magnetism in bilayer CrI3. Nano Lett., 18(12):7658–7664, 2018. PMID: 30408960.
[57] A. A. Soluyanov. Topological aspects of band theory. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2012.
[58] A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature, 539(7630):509–517, 2016.
[59] P.J.Stephens,F.J.Devlin,C.F.Chabalowski,andM.J.Frisch.AbInitioCalculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. C, 98(45):11623–11627, 1994.
[60] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 91:146401, Sep 2003.
[61] D. Thouless. Wannier functions for magnetic sub-bands. J. Phys. C: Solid State Phys., 17(12):L325, 1984.
[62] D. Thouless. Magnetism in condensed matter by stephen blundell. Amer. J. Phys., 71(1):94–94, 2003.
[63] D. Tong. Lectures on the quantum hall effect. arXiv preprint arXiv:1606.06687, 2016.
[64] L.Toulouse.Presentationonparis.https://www.lct.jussieu.fr/pagesperso/ toulouse/presentations/presentation_paris_10.pdf, 2010. [Online; ac- cessed June 6, 2023].
[65] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid corre- lation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58(8):1200–1211, 1980.
[66] D. Wang and B. Sanyal. Systematic study of monolayer to trilayer CrI3: Stacking sequence dependence of electronic structure and magnetism. J. Phys. Chem. C, 125(33):18467–18473, 2021.
[67] X.-P. Wei, Y.-L. Zhang, X.-W. Sun, T. Song, P. Guo, Y. Gao, J.-L. Zhang, X.-F. Zhu, and J.-B. Deng. Exchange interactions and curie temperatures in Fe2 NiZ com- pounds. J. Alloys Compd., 694:1254–1259, 2017.
[68] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov. Wanniertools : An open-source software package for novel topological materials. Comput. Phys. Commun., 224:405 – 416, 2018.
[69] J. Xiao and B. Yan. An electron-counting rule to determine the interlayer magnetic coupling of the van der waals materials. 2D Mater., 7(4):045010, 2020.
[70] K. Yano, K. Nishimura, T. Ohta, and K. Sato. Collapse-like decrease of RKKY interaction and kondo effect in heavy fermion compounds (Ce1-xGdx)Ni (0.03≤x ≤0.20). J Phys Conf Ser, 400(PART 3), 2012. 26th International Conference on Low Temperature Physics, LT 2011 ; Conference date: 10-08-2011 Through 17-08-2011.
[71] H. Yu, J. Zhao, and F. Zheng. Interlayer magnetic interactions in π/3-twisted bilayer CrI3. Appl. Phys. Lett., 119(22):222403, 2021.
[72] J. Zhang, X. Cai, W. Xia, A. Liang, J. Huang, C. Wang, L. Yang, H. Yuan, Y. Chen, S. Zhang, Y. Guo, Z. Liu, and G. Li. Unveiling electronic correlation and the fer- romagnetic superexchange mechanism in the van der waals crystal CrSiTe3. Phys. Rev. Lett., 123:047203, Jul 2019.
[73] Y. Zhang, L.-F. Lin, A. Moreo, and E. Dagotto. Theoretical study of the crystal and electronic properties of α- RuI3. Phys. Rev. B, 105(8):085107, 2022.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *