帳號:guest(3.144.13.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):培格洛
作者(外文):Santiago Figueroa Manrique
論文名稱(中文):兩體SSH模型中的局域化,邊緣態,與其拓樸特性
論文名稱(外文):Localization, edge states and topology in the two-body SSH model
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray-Kuang
口試委員(中文):郭華丞
黃一平
口試委員(外文):Kuo, Watson
Huang, Yi-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022425
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:63
中文關鍵詞:SSH模型交互作用系統札克相位
外文關鍵詞:SSH modelInteracting systemsZak phase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究探討了兩體SSH模型的局域化、邊緣態以及拓樸特性。首先我們引入單體
的SSH模型來說明本研究的一些重要概念:邊緣態、局域化、對稱性和bulk-boundary correspondence。我們直接對實空間的矩陣進行數值對角化來計算邊緣態;至於局域化的研究,我們使用了inverse participation ratio (IPR)。IPR不只可以在連續體中區分束縛態,還可以用來研究邊緣態的局域化性質。我們定義了么正和反么正對稱性,並且說明其在凝態系統中的重要性。我們特別專注於平移、共轉譯、反轉以及手徵對稱性,這些特性之後能讓我們定義出交互作用模型的拓樸性質。

接著我們利用絕熱定理以及貝里相位建立拓樸。我們定義了拓樸不變量和札克相位,並討論其在反對稱下的量子化。我們更進一步地將此拓樸不變量從平移對稱系統延伸到可能是非厄米特、雙正交,具共轉譯對稱性的交互作用系統。我們呈現了一種利用威爾森迴圈算出此不變量數值的方法,另外,也呈現了捲繞數、簡單SSH模型的拓樸不變量和bulk-boundary correspondence。

最後,我們研究兩體SSH模型。我們證明了此系統具有反轉和共轉譯對稱性,但是並沒有手徵對稱性。此外,我們用正則變換,將內部自由度映射到準自旋自由度,並利用質心座標和相對座標,將波函數分解。如此一來我們便可以套用由共轉譯對稱導出的類布洛赫定理,去計算系統的左和右布洛赫週期函數,進而定義出札克相位。最後,我們得到D1和D2二聚體的兩邊緣態,我們可以利用IPR和數值計算出的顯式波函數來分辨兩者。這個邊緣態為幾何結構、邊界以及系統的交互作用交織出的結果。此外,我們定義出的札克相位是用來描述三個離散能帶的拓樸結構,導出非普通拓樸,因為π和0這兩個相位不只和ω/ν有關,它們和交互作用的長度跟bulk boundarycorrespondence的破壞也有關係。
In this work, we study the localization, edge states and topology of the two-body SSH model. First, we introduce the single-particle SSH model to illustrate some important concepts for the development of the work: Edge states, localization, symmetries and the bulk-boundary correspondence. To compute the edge states, we directly diagonalize numerically the real space representation matrix of the model. For the study of the localization, we use the inverse participation ratio (IPR), which can not only be used to distinguish bound states even in the continua, but also to investigate the localization properties of edge states. We define unitary and anti-unitary symmetries and explain their importance in condensed matter systems; in particular, we focus in translational, cotranslational inversion and chiral symmetries, which later allow us to define the topological properties
of the interacting model.

Next, we establish the topology by the means of the adiabatic theorem and the Berry phase. With these, we define our topological invariant, the Zak phase, and discuss its quantization under inversion symmetry. Moreover, we extend this topological invariant from translational symmetric systems, to interacting systems with cotranslational
symmetry which may be non-Hermitian, but biorthogonal. Furthermore, a way to numerically compute this invariant through the Wilson-loop approach is provided. The winding number, as the topological invariant for the simple SSH model, and the bulkboundary correspondence are presented as well. Finally, we examine the two-body SSH model. We show that this system presents inversion and cotranslational symmetries, but no chiral symmetry. In addition, we utilize a canonical transformation to map the internal degrees of freedom into pseudo-spin ones, together with the center-of-mass and relative coordinates, to separate the wave function such that
we can apply a Bloch-like theorem, derived from the cotranslational symmetry, to calculate the left and right Bloch periodic functions of the system, and hence, define the Zak phase.

Finally, we obtain two edge states in both dimerizations D1 and D2, this are distinguished with the IPR and the explicit form of the wave functions computed numerically; these edge states come as a result between the interplay between the geometry, the boundaries
and the interaction of the system. On the other hand, the defined Zak phase is used to characterize the topological structure of three of the discrete bands, yielding non-trivial topology as the values of π and 0 depend not only on the ratio ω/ν but also on the interaction strength, and breaking the bulk boundary correspondence.
1 Introduction 1
2 The Su-Schrieffer-Heeger model 3
2.1 The SSH Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The bulk Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 The bulk-momentum space Hamiltonian . . . . . . . . . . . . . . 5
2.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Localization of the edge states . . . . . . . . . . . . . . . . . . . . 8
2.4 Symmetries in the SSH model . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Unitary symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Non-unitary symmetries . . . . . . . . . . . . . . . . . . . . . . . 12
3 Topological properties in one-dimension 15
3.1 The adiabatic theorem and the Berry phase . . . . . . . . . . . . . . . . 15
3.1.1 Gauge invariance of the Berry phase . . . . . . . . . . . . . . . . 16
3.2 Topological invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 The Zak phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Quantization of the Zak phase . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Wilson-loop approach . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 The winding number and bulk-boundary correspondence in the SSH
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Topology in interacting systems . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Cotranslational symmetry . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Biorthogonal Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 The Zak phase for biorthogonal systems . . . . . . . . . . . . . . 25
4 The two-body SSH model 27
4.1 The interacting Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Symmetries in the two-body SSH model . . . . . . . . . . . . . . . . . . 29
4.3 Bulk momentum-space Hamiltonian . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Canonical transformation: Pseudo-spin basis . . . . . . . . . . . . 30
4.3.2 Center-of-mass and relative coordinates . . . . . . . . . . . . . . . 32
4.4 Energy and bound states in the bulk Hamiltonian . . . . . . . . . . . . . 35
4.5 Energy and edge states in D1 and D2 . . . . . . . . . . . . . . . . . . . . 38
4.6 Topology of the two-body SSH model . . . . . . . . . . . . . . . . . . . . 42
5 Conclusions and outlook 46
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Appendix 48
A Numerical implementation of the two-body SSH matrix in the Fock
basis 48
B Pseudo-spin and center-of-mass coordinates’ Schrödinger equation 50
References 52
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.
[2] J. K. Asboth, L. Oroszany, and A. Palyi. A Short Course on Topological Insulators.
Springer, Heidelberg, 2016.
[3] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Harcourt College, New York,
1979.
[4] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and
I. Bloch. Direct measurement of the zak phase in topological bloch bands. Nature
Phys., 9:795–800, Nov 2013.
[5] J. Bell and R. Rajaraman. On states, on a lattice, with half-integral charge. Nucl.
Phys. B, 220(1):1–12, 1983.
[6] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Phys. Rev.
Lett., 392:45–57, Mar 1984.
[7] M. Born and V. Fock. Beweis des adiabatensatzes. Zeitschrift für Physik, 51:165–180,
Jan 1928.
[8] M. Born and T. von Karman. Uber schwingungen im raumgittern. Phys. Z., 13(1):297–
309, Jan 1912.
[9] D. C. Brody. Biorthogonal quantum mechanics. J. Phys. A., 47(3):035305, dec 2013.
[10] Y. H. Chang, N. D. Rivera-Torres, S. Figueroa-Manrique, R. A. Robles-Robles, V. C.
Silalahi, W. C. S., G. Wang, G. Marcucci, L. Pilozzi, C. Conti, R. K. Lee, and
W. Kuo. Probing topological protected transport in finite-sized su-schrieffer-heeger
chains. Submitted to Nat. Commun., jun 2022.
[11] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu. Classification of topological
quantum matter with symmetries. Rev. Mod. Phys., 88:035005, Aug 2016.
[12] N. R. Cooper, J. Dalibard, and I. B. Spielman. Topological bands for ultracold atoms.
Rev. Mod. Phys., 91:015005, Mar 2019.
[13] T. Dai, Y. Ao, J. Bao, J. Mao, Y. Chi, Z. Fu, Y. You, X. Chen, C. Zhai, B. Tang,
Y. Yang, Z. Li, L. Yuan, F. Gao, X. Lin, M. Thompson, J. O’Brien, Y. Li, X. Hu,
Q. Gong, and J. Wang. Topologically protected quantum entanglement emitters.
Nat. Photonics, 16(3):248–257, Mar. 2022.
[14] M. Di Liberto, A. Recati, I. Carusotto, and C. Menotti. Two-body physics in the
su-schrieffer-heeger model. Phys. Rev. A, 94:062704, Dec 2016.
[15] M. Di Liberto, A. Recati, I. Carusotto, and C. Menotti. Two-body bound and
edge states in the extended ssh bose-hubbard model. Eur. Phys. J. Spec. Top.,
226:2751–2762, Jul 2017.
52 References
[16] N. K. Efremidis. Topological photonic su-schrieffer-heeger-type coupler. Phys. Rev.
A, 104:053531, Nov 2021.
[17] M. Franz and L. Molenkap. Topological insulators. Elsevier, 2013.
[18] N. Fu, Z. Fu, H. Zhang, Q. Liao, D. Zhao, and S. Ke. Topological bound modes in
optical waveguide arrays with alternating positive and negative couplings. Nature
Phys., 52:61, Jan 2020.
[19] M. A. Gorlach and A. N. Poddubny. Topological edge states of bound photon pairs.
Phys. Rev. A, 95:053866, May 2017.
[20] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys.,
82:3045–3067, Nov 2010.
[21] Y. Hatsugai. Quantized berry phases as a local order parameter of a quantum liquid.
Journal of the Physical Society of Japan, 75(12):123601, 2006.
[22] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su. Solitons in conducting
polymers. Rev. Mod. Phys., 60:781–850, Jul 1988.
[23] J. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A.,
276:238–257, Nov 1963.
[24] R. Jackiw and C. Rebbi. Solitons with fermion number 1
2 . Phys. Rev. D, 13:3398–3409,
Jun 1976.
[25] Z.-Q. Jiao, S. Longhi, X.-W. Wang, J. Gao, W.-H. Zhou, Y. Wang, Y.-X. Fu, L. Wang,
R.-J. Ren, L.-F. Qiao, and X.-M. Jin. Experimentally detecting quantized zak phases
without chiral symmetry in photonic lattices. Phys. Rev. Lett., 127:147401, Sep 2021.
[26] C. L. Kane and T. C. Lubensky. Topological boundary modes in isostatic lattices.
Nature Phys., 10:39–45, Jan 2014.
[27] B. Kramer and A. MacKinnon. Localization: theory and experiment. Rep. Prog.
Phys., 56:1469–1564, Dec 1993.
[28] Y.-J. Lin, Y.-H. Chang, W.-C. Chien, and W. Kuo. Transmission line metamaterials
based on strongly coupled split ring/complementary split ring resonators. Opt.
Express, 25:30395–30405, Nov 2017.
[29] C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung. Topological edge
plasmon modes between diatomic chains of plasmonic nanoparticles. Opt. Express,
23(3):2021–2031, Feb 2015.
[30] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch. A thouless
quantum pump with ultracold bosonic atoms in an optical superlattice. Nature Phys.,
12:350–354, Apr 2016.
[31] W. W. Ludwig. Topological phases: classification of topological insulators and
superconductors of non-interacting fermions, and beyond. Phys. Scr., 2016:014001,
2015.
[32] J. Maciejko and G. A. Fiete. Fractionalized topological insulators. Nat. Phys.,
11(5):385–388, may 2015.
References 53
[33] J. Maciejko and G. A. Fiete. Interferometric measurements of many-body topological
invariants using mobile impurities. Nat. Commun., 7(1):11994, jun 2016.
[34] N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen. Observation of optical
shockley-like surface states in photonic superlattices. Opt. Lett., 34(11):1633–1635,
Jun 2009.
[35] G. Marcucci, D. Pierangeli, A. J. Agranat, R.-K. Lee, E. DelRe, and C. Conti.
Topological control of extreme waves. Nature Commun., 10:5090, Nov 2019.
[36] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and
Y. Takahashi. Topological thouless pumping of ultracold fermions. Nature Phys.,
12:296–300, Apr 2016.
[37] E. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.
[38] L. Pilozzi and C. Conti. Topological lasing in resonant photonic structures. Phys.
Rev. B, 93:195317, May 2016.
[39] X.-L. Qi and S.-C. Zhang. Topological insulators and superconductors. Rev. Mod.
Phys., 83:1057–1110, Oct 2011.
[40] X. Qin, F. Mei, Y. Ke, L. Zhang, and C. Lee. Topological invariant and cotranslational
symmetry in strongly interacting multi-magnon systems. New J. Phys., 20(1):013003,
Jan 2018.
[41] N. Rivera. Study of finit fermionic chains with edge modes using an appropiate
momentum representation. Master’s thesis, Universidad del Valle, 2019.
[42] S. Ryu and Y. Hatsugai. Topological origin of zero-energy edge states in particle-hole
symmetric systems. Phys. Rev. Lett., 89:077002, Jul 2002.
[43] F. Schwabl. Advanced Quantum Mechanics. Springer Berlin, Heidelberg, 2008.
[44] J. Solyom. Fundamentals of the Physics of Solids: Volume III: Normal, Brokensymmetry,
and Correlated Systems, vol 3. Springer Science and Business Media,
Berlin, 2008.
[45] W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev.
Lett., 42:1698–1701, Jun 1979.
[46] M. L. Sun, G. Wang, N. B. Li, and T. Nakayama. Localization-delocalization
transition in self-dual quasi-periodic lattices. Euro. Phys. Lett., 110:57003, Jun 2015.
[47] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall
conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408,
Aug 1982.
[48] M. Valiente. Lattice two-body problem with arbitrary finite-range interactions. Phys.
Rev. A, 81:042102, Apr 2010.
[49] G. van Miert, C. Ortix, and C. M. Smith. Topological origin of edge states in
two-dimensional inversion-symmetric insulators and semimetals. 2D Materials,
4(1):015023, nov 2016.
54 References
[50] G. E. Volovik. The Universe in a Helium droplet. Oxford, 2009.
[51] M. Wagner, F. Dangel, H. Cartarius, J. Main, and G. Wunner. Numerical calculation
of the complex berry phase in non-hermitian systems. Acta Polytechnica, 57(6):470–
–476, dec 2017.
[52] H.-X. Wang, G.-Y. Guo, and J.-H. Jiang. Band topology in classical waves: Wilsonloop
approach to topological numbers and fragile topology. New J. Phys., 21(9):093029,
sep 2019.
[53] S. Weinberg. The quantum theory of fields. Cambridge University Press, 1995.
[54] E. Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der
Atomspektren. Vieweg+Teubner Verlag Wiesbaden, 1931.
[55] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley,
A. Kantian, H. P. Büchler, and P. Zoller. Repulsively bound atom pairs in an optical
lattice. Nature, 441:853–856, Jun 2006.
[56] D. Xiao, M.-C. Chang, and Q. Niu. Berry phase effects on electronic properties. Rev.
Mod. Phys., 82:1959–2007, Jul 2010.
[57] D. Xie, W. Gou, T. Xiao, B. Gadway, and B. Yan. Topological characterizations of
an extended su–schrieffer–heeger model. Nature Phys., 5:55, May 2019.
[58] J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62:2747–2750, Jun
1989.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *