帳號:guest(3.135.203.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫宜廷
作者(外文):Sun, Yi-Ting
論文名稱(中文):7鋰133銫費什巴赫共振的耦合頻道計算
論文名稱(外文):Coupled-Channel Calculations of 7Li-133Cs Feshbach Resonances
指導教授(中文):童世光
指導教授(外文):Tung, Shih-Kuang
口試委員(中文):劉怡維
蘇蓉容
口試委員(外文):Liu, Yi-Wei
Su, Jung-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:109022401
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:48
中文關鍵詞:超冷原子混合氣體費什巴赫共振耦合頻道計算
外文關鍵詞:Ultracold atomsUltracold mixtureFeshbach resonanceCoupled-channel calculation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:184
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文發表7鋰133銫費什巴赫共振的耦合頻道計算。內容如下:一,巴赫共振的原理與超冷原子碰撞的複習。二,我們實驗的陳述。實驗中在 1000 G 以下觀測到六個 s- 波共振以及四個 p- 波共振,並使用有限溫度模型從原子損失量的數據取出共振位置。三,使用 MOLSCAT 和 BOUND 執行 7 鋰 133 銫費什巴赫共振的耦合頻道計算,算出散射長度、散射矩陣、以及束縛能量。鋰銫的位能可修正並符合實驗中觀測到的共振位置。從修正完畢的鋰銫位能計算,單態與三重態的散測長度為 a1 = 45.82(2)a0 與 a3 = 873.8(70) a0 。最後,鋰銫費什巴赫分子的散射長度與束縛能量由 MOLSCAT 和 BOUND 得著。
做出鋰銫完善的特徵調查,對未來使用7鋰133銫的研究是重要的。在近於磁性費什巴赫共振的區域,僅調磁場就可以鋰銫的交互作用強度調變數個數量級。費什巴赫共振的存在給予我們許多研究的可能性,如少體物理中的費什巴赫分子與葉菲莫夫三聚體,以及多體物理中的極子和單元量子氣體。
This thesis presents coupled-channel calculations of 7 Li-133 Cs Feshbach resonances. First, the principles behind Feshbach resonances and ultracold atomic collisions are reviewed. Then, the details of our experiment are elaborated. In this work, we observe six s-wave and four p-wave resonances under 1000 G, and the resonance positions are extracted from the loss profile with finite-temperature model fits. After that, coupled-channel calculations are carried out, using MOLSCAT and BOUND. In the calculations, the LiCs potentials are tweaked to fit the observed resonance positions. From the refined Li-Cs potentials, the singlet and triplet scattering lengths are calculated to be a1 = 45.82(2) a0 and a3 = 873.8(70) a0 . Finally, using MOLSCAT and BOUND, we also obtain the scattering lengths and binding
energies of the Li-Cs Feshbach molecules.
The full characterization of Li-Cs interaction is crucial to future research using 7Li-133Cs mixtures. Near the magnetic Feshbach resonances, it is possible to tune the Li-Cs interaction strength over several orders of magnitude, simply by varying an external magnetic field. The presence of Feshbach resonances in Li-Cs mixtures opens up exciting opportunities to explore few-body physics, such as Feshbach molecules and Efimov trimers, and many-body phenomena, such as polarons and unitary quantum gases.
1. Feshbach Resonance 5
1.1 Scattering of Two Particles 5
1.2 Hyperfine Interaction 8
1.3 Two-Channel Scattering Model 13

2 Experiment 16
2.1 Magneto-Optical Traps of Li and Cs 17
2.2 Optical Dipole Trap 17
2.3 Evaporation and Spin Preparation 18
2.4 Magnetic Feshbach Spectroscopy 21
2.5 Magnetic Field Error 21

3 Coupled-Channel Calculation 23
3.1 MOLSCAT 23
3.2 BOUND 25
3.3 Potential Shift 26
3.4 Computational Time-Cost 28
3.5 Thermal Averaging 29
3.6 Finite-Temperature Model Fit 34

4 Related Collisional Properties 38
3.7 Inelastic Two-body Loss 38
3.8 Resonance Strength 40
3.9 Singlet and Triplet Scattering Lengths 41

5 Conclusion 44

References 46
[1] L. D. Landau and E. M. Lifshitz, translated by J. B. Sykes and J. S. Bell, ”Course of Theoretical Physics Volume 3: Quantum Mechanics, Non-relativistic Theory, § 34”, Pergamon Press, Second revised edition (1965).
[2] Cheng Chin, ”A simple model of Feshbach molecules”, arXiv:cond-mat/0506313v2 (2005).
[3] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, ”Feshbach resonances in ultracold gases”, Reviews of Modern Physics 82, 1225 (2010).
[4] M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, E. Tiemann, ”Observation of interspecies 6Li-133Cs Feshbach resonances”, Physical Review A 87, 010701(R),
(2013).
[5] S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, ”Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions”, Physical Review A, 87, 010702(R), (2013).
[6] Pascal Naidon, ”Magnetic Feshbach resonances in 7Li
133Cs mixtures”, arXiv 2001.05329 (2020).
[7] W.-X. Li, Y.-D. Chen, Y.-T. Sun, S. Tung, and P. S. Julienne, ”Feshbach resonances in an ultracold 7Li-133Cs Bose-Bose mixture”, arXiv 2205.08837 (2022).
[8] U. Schlöder, H. Engler, U. Schünemann, R. Grimm, and M. Weidemüller, ”Cold inelastic collisions between lithium and cesium in a two-species magneto-optical trap”, The European Physics Journal D, 7, 331 (1999).
[9] R. Grimm, M. Weidemuller, Y. B. Ovchinnikov, ”Optical Dipole Traps for Neutral Atoms”, Advances in Atomic Molecular and Optical Physics 42, 2000, 95-170 (1999).
[10] Y.-D. Chen, W.-X. Li, M.-E. Chou, C.-H, Kuo, C.-S. Li, and S. Tung, ”Lithium-cesium slow beam from a two-dimensional magneto-optical trap”, Physical Review A 103, 023102 (2021).
[11] N. Gross and L. Khaykovich, ”All-optical production of 7Li Bose-Einstein condensation using Feshbach resonances”, Physical Review A 77, 023604 (2008).
[12] T. Ikemachi, A. Ito, Y. Aratake, Y. Chen, M. Koashi, M. Kuwata-Gonokami, and M. Horikoshi, ”All-optical production of dual Bose–Einstein condensates of paired fermions and bosons with 6Li and 7Li”, Journal of Physics B: Atomic, Molecular and Optical Physics, 50
01LT01 (2017).
[13] N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans, and L. Khaykovich, ”Study of Efimov physics in two nuclear-spin sublevels of 7Li”, Comptes Rendus Physique 12, 4 (2011).
[14] R. G. Hulet, J. H. V. Nguyen, and R. Senaratne, ”Methods for Preparing Quantum Gases of Lithium”, Review of Scientific Instruments 91, 011101 (2020).
[15] Jeremy M. Hutson and C. Ruth Le Sueur, ”MOLSCAT: a program for non-reactive quantum scattering calculation on atomic and molecular collisions”, Version 2020.0, https://github.com/molscat/molscat.
[16] Jeremy M. Hutson and C. Ruth Le Sueur, ”MOLSCAT: a program for non-reactive quantum scattering calculations on atomic and molecular collisions”, Computer Physics Communications 241, 9-18 (2019).
[17] E. Arimondo, M. Inguscio, P. Violino, ”Experimental determinations of the hyperfine structure in the alkali atoms”, Reviews of Modern Physics 49, 31 (1977).
[18] B. R. Johnson, ”The multichannel log-derivative method for scattering calculations”, Journal of Computational Physics 13, 445-449 (1973).
[19] David E. Manolopoulos, ”An improved log derivative method for inelastic scattering”, Journal of Chemical Physics 85, 6425 (1986).
[20] Millard H. Alexander and David E. Manolopoulos, ”A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory”, Journal of Chemical Physics 86, 2044 (1987).
[21] Jeremy M. Hutson and C. Ruth Le Sueur, ”BOUND: a program for bound states of interacting pairs of atoms and molecules”, Version 2020.0, https://github.com/molscat/molscat.
[22] Jeremy M. Hutson and C. Ruth Le Sueur, ”BOUND and FIELD: programs for calculating bound states of interacting pairs of atoms and molecules”, Computer Physics Communications 241, 1-8 (2019).
[23] P. Staanum, A. Pashov, H. Knockel, E. Tiemann, ”X1Σ+ and a3Σ+ states of LiCs studied by Fourier-transform spectroscopy”, Physical Review A 75, 042513 (2007).
[24] Paul S. Julienne and Jeremy M. Hutson, ”Contrasting the wide Feshbach resonces in 6Li and 7Li”, Physical Review A 89, 052715 (2014).
[25] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, ”Multiplet structure of Feshbach resonances in nonzero partial waves”, Physical Review A 69, 042712 (2004).
[26] Eugene P. Wigner, ”On the Behavior of Cross Sections Near Thresholds”, Physical Review, 73, 9 (1948).
[27] T. L. Nicholson, S. Blatt, B. J. Bloom, J. R. Williams, J. W. Thomsen, and J. Ye, ”Optical Feshbach resonances: Field-dressed theory and comparison with experiments”, Physical Review A 92, 022709 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *