帳號:guest(3.148.113.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高子耘
作者(外文):Gao, Zi-Yun
論文名稱(中文):流形上的p-拉普拉斯算子研究
論文名稱(外文):A Study of p-Laplacian on Complete Manifolds
指導教授(中文):宋瓊珠
指導教授(外文):Sung, Chiung-Jue
口試委員(中文):高淑蓉
饒維明
口試委員(外文):Kao, Shu-Jung
Nhieu, Duy-Minh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:109021521
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:60
中文關鍵詞:流形拉普拉斯梯度估計
外文關鍵詞:manifoldLalplaciangradient estimate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們首先給出了拉普拉斯特徵函數梯度估計的完整證明,然後給出了p-特徵函數的銳梯度估計。最後,我們詳細證明了主特徵值達到最大值的流形結構。
In this thesis, we first give a complete proof of a gradient estimate for positive eigenfunctions of Laplacian, then we show a sharp gradient estimate for positive p-eigenfunctions. At last, we give a detailed proof of the theorem of Sung and Wang in the structure of manifolds whose principal eigenvalues achieve the maximum value.
1 Introduction---------------------------1
2 Preliminaries--------------------------4
3 Gradient estimates for Laplacian-------11
4 Gradient estimates for p-Laplacian-----21
5 Splitting theorems---------------------48
[1] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Communications on Pure and Applied Mathematics 28.2 (1975), 201-228.
[2] P. Li and J. Wang, Complete manifolds with positive spectrum, II. Journal of Differential Geometry 62.1 (2002), 143-162.
[3] X. Wang and L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian manifolds, Communications in Analysis and Geometry 19 (2011), 759–772.
[4] C. Sung and J. Wang, Sharp gradient estimate and spectral rigidity for p -Laplacian, Mathematical Research Letters. 21 (2014), 885-904
[5] P. Li, Geometric analysis. Vol. 134. Cambridge University Press, (2012).
[6] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds. Journal of Differential Geometry, 36.2 (1992), 417-450.
[7] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature. Journal of Differential Geometry, 6.1 (1971),
119- 128.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *