帳號:guest(3.137.223.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡承祐
作者(外文):Tsai, Cheng-Yu
論文名稱(中文):菱形多面體在動態幾何中的應用
論文名稱(外文):Applications of Rhombic Polyhedron in Dynamic Geometry
指導教授(中文):全任重
朱家杰
指導教授(外文):Chuan, Jen-Chung
Chu, Chia-Chieh
口試委員(中文):李華倫
李明恭
口試委員(外文):Li, Hua-Lun
Li, Ming-Kung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:109021512
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:30
中文關鍵詞:菱形十二面體菱形二十面體菱形三十面體菱形多面體
外文關鍵詞:rhombic dodecahedronrhombic icosahedronrhombic triacontahedronrhombic polyhedron
相關次數:
  • 推薦推薦:0
  • 點閱點閱:236
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
菱形是一種具有很多特殊性質的圖形,由菱形組成的多面體自然有很多有趣的應用。本文重點研究了三種菱形多面體,即菱形十二面體、菱形二十面體和菱形三十面體,並探討了以下主題:
1. 以菱形多面體的拼圖的著色。
2. 菱形多面體的分割。
3. 菱形多面體與其分割的連桿結構。
The rhombus is a kind of figure with many special properties, and the polyhedron composed of rhombuses naturally has many interesting applications. This paper focus on three rhombic polyhedra: the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron and explores the following topics :
1. Colorings of the "Jupiter", a 3D jigsaw puzzle based on the
rhombic polyhedron
2. Dissection-assembly of the rhombic polyhedron
3. Linkage associated with dissection-assembly of the rhombic polyhedron
1 Introduction 4
1.1 Research Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Rhombic Dodecahedron, Rhombic Triacontahedron and Rhombic Icosahedron . . . . . . . . . . 4
2 Jupiter, a Puzzle Based on the Rhombic Triacontahedron 6
2.1 The Third Stellation of Rhombic Dodecahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Colorings of the Puzzle Based on the Third Stellation of Rhombic Dodecahedron . . . . . 9
2.2 The Puzzle Based on the Rhombic Triacontahedron . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Colorings of Jupiter of Rhombic Triacontahedron . . . . . . . . . . . . . . . . . . . . . . 14
3 Dissection of the Rhombic Polyhedron 20
3.1 Dissection-Assembly of the Rhombic Dodecahedron into 4 Rhombohedra . . . . . . . . . . . . . 20
3.2 Dissection-Assembly of the Rhombic Icosahedron into 10 Rhombohedra . . . . . . . . . . . . . . 21
3.3 Dissection-Assembly of the Rhombic Triacontahedron into 20 Rhombohedra . . . . . . . . . . . 24
4 Linkage Associated with the Rhombic Polyhedron 26
4.1 Assembly of 4 Rhombohedra Linkages to form the Rhombic Dodecahedron Linkage . . . . . . . 26
4.2 Assembly of 10 Rhombohedra Linkages to form the Rhombic Icosahedron Linkage . . . . . . . . 27
4.3 Assembly of 20 Rhombohedra Linkages to form the Rhombic Triacontahedron Linkage . . . . . . 28
References 30
[1] H. Martyn Cundy \& A. P. Rollett, Mathematical Model, Oxford University Press, 1961

[2] KANAYAMA, R. Bibliography on linkage. Tohoku Mathematical Journal, First Series, 1933, 37: 294-319.

[3] Stewart T. Coffin, The Puzzling World of Polyhedral Dissections, Oxford University Press, 1974

[4] Stewart T. Coffin, Geometric puzzle design, A K Peters, Wellesley Massachusetts, 2007
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *