帳號:guest(3.14.143.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳建庭
作者(外文):Chen, Eric Jian-Ting
論文名稱(中文):半經典熱核漸近與摩斯理論
論文名稱(外文):Semi-classical Heat Kernel Asymptotics and Morse Theory
指導教授(中文):蕭欽玉
何南國
指導教授(外文):Hsiao, Chin-Yu
Ho, Nan-Kuo
口試委員(中文):廖軒毅
黃榮宗
口試委員(外文):Liao, Hsuan-Yi
Huang, Rung-Tzung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:109021503
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:59
中文關鍵詞:半經典分析熱核維藤形變摩斯理論
外文關鍵詞:Semi-classical AnalysisHeat KernelWitten DeformationMorse Theory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:167
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文中,我們引入了在半經典分析中的伸縮技巧和定義伸縮熱核。我們透過研究伸縮熱核的漸近行為去捕捉摩斯函數的臨界點。除此之外,我們研究在臨界點外面的熱核漸近行為。作為一個應用,這些漸近行為的結果給出了一個對於摩斯不等式的全新解析證明。
In this thesis, we introduce the scaling technique in semi-classical analysis
and define the scaled heat kernels. We capture critical points of a Morse function by
studying the asymptotic behaviors of the scaled heat kernels. We also study the asymptotic
behaviors of heat kernels outside critical points. As an application, these asymptotic
behavior results give a new analytic proof of the Morse inequalities.
Acknowledgements-------v

Chapter 1. Introduction-------1

Chapter 2. Preliminaries------7
2.1. Notations and Terminologies-------7
2.2. Hodge Laplacians-------8
2.3. Morse Functions-------10

Chapter 3. Witten Laplacians-------13
3.1. Witten Deformation-------13
3.2. Witten Laplacians-------14

Chapter 4. Semi-classical Heat Kernels for Witten Laplacians-------19
4.1. Heat Kernels-------19
4.2. Locally Flat Metric near Critical Point-------21
4.3. Scaling Technique-------24

Chapter 5. Scaled Heat Kernel Asymptotics-------29
5.1. Sobolev Space Theory-------29
5.2. Mapping Property of Scaled Heat Operators-------33
5.3. Proof of Theorem 4.5-------36
5.4. Asymptotic Behaviors of Scaled Heat Kernels-------39
5.A. Appendix: Proof of (5.4.6)-------43

Chapter 6. Heat Kernel Asymptotics outside Critical Points-------45
6.1. Bochner Method-------45
6.2. Asymptotic Behaviors of Heat Kernels outside Critical Points-------52
6.3. Application to Morse inequalities-------56

Bibliography-------59
[1] C. Y. Hsiao, W. Zhu, Heat Kernel Asymptotics for Kohn Laplacians on CR Manifolds,
arXiv:2106.09268.
[2] J. Lee, Introduction to Riemannian Manifolds, 2nd edition. Springer, 2018.
[3] G. Marinescu, The Laplace Operator on High Tensor Powers of Line Bundles. Preprint.
[4] H. McKean, I. Singer, Curvature and the eigenvalue of the Laplacian, J. Differential Geometry 1 (1967), 43-69.
[5] J. Milnor, Morse Theory. Princeton University Press, Princeton, 1963.
[6] L. Nicolaescu, An Invitation to Morse Theory, 2nd edition. Springer, 2011.
[7] F. Warner, Foundations of Differentiable Manifolds and Lie Groups. Springer, 1983.
[8] E. Witten, Supersymmetry and Morse Theory, J. Differential Geometry 17 (1982), 661-692.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *