帳號:guest(18.191.132.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李田福
作者(外文):Li, Tien-Fu
論文名稱(中文):化學吸附溫度於形成雙層鎳基鈷氧化物奈米顆粒及其熱催化二氧化碳甲烷化效能之影響
論文名稱(外文):Effects of chemisorption temperature on formation of the bilayer Ni based Co oxide nanoparticle and their thermocatalytic CO2 methanation performance
指導教授(中文):周子勤
陳燦耀
指導教授(外文):Chou, Tsu-Chin
Chen, Tsan-Yao
口試委員(中文):王冠文
楊家銘
口試委員(外文):Wang, Kuan-Wen
Yang, Chia-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分析與環境科學研究所
學號:109015512
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:124
中文關鍵詞:奈米金屬觸媒X光吸收光譜二氧化碳甲烷化反應
外文關鍵詞:metal nanocatalystsX-ray absorption spectroscopycarbon dioxide methanation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:247
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以鈷、鎳為觸媒主體,高表面積的活性碳作為載體,開發鈷鎳雙奈米金屬觸媒(Cobalt-Nickel Nano Crystal, CN NC),經過各項結構分析技術確認CN NC為針狀結構、於晶格中帶氧且具有長程有序原子排列的氧化物,經反應測試後,發現具有遠超過單金屬鈷和鎳對照組約5413.9 umol/g的CO産量,此後又進行於不同溫度下加熱鎳離子以進行觸媒合成,發現雖然針狀結構在室溫、40°C下仍存在,但産出CO及CH4的效能不比在70°C時來得高,而透過X光吸收光譜證明,無論是鈷或鎳原子,其晶格排列中的氧在不同溫度下是有所差異的。

進一步以低莫耳比例的鈀原子修飾鈷鎳,發現分別在鈀金屬含量相對於鈷莫耳數比例為0.1 (CNP-01)時CO產率為6,200.1 umol/g,而為0.3(CNP-03)時 CH4產率達1883.3 umol/g。由此可發現,將低莫耳比例的鈀添加於CN NC上,鈀的CO和H2吸附效果可以將本來可能會脫附的CO留下並持續反應,造成CH4産量的提升,既減少可能會因為鈀的高莫耳比例添加而造成的成本提升,也提升了整體的效能。
In this study, Cobalt-Nickel Nano Crystal (CN NC) was developed with cobalt and nickel as the main catalyst and activated carbon with high surface area as the carrier. Oxides with a crystalline structure with oxygen in their lattice, and long-range ordered atomic arrangement was found to have a CO production of about 5413.9 umol/g far exceeding that of the single-metal cobalt and nickel catalyst control groups for reaction tests. After that, heating nickel ions at high temperature for catalyst synthesis, it was found that although the needle-like structure still exists at room temperature and 40 °C, the efficiency of CO and CH4 production were not higher than that at 70 °C. And, it was proved by XAS that the oxygen in the lattice arrangement of cobalt or nickel atoms is different at different temperatures.

The cobalt-nickel was further modified with lower molar ratio of palladium atoms, and it was found that the yield of CO was 6,200.1 umol/g when the palladium metal content relative to the cobalt molar ratio was 0.1 (CNP-01), and the yield of CH4 is 1883.3 umol/g when the palladium metal content relative to the cobalt molar ratio was 0.3 (CNP-03). Therefore, it can be found that when a lower molar ratio of palladium is added to the CN NC, the CO and H2 adsorption effect of palladium can leave CO which may have been desorbed originally continues to react with H2, resulting in an increase in the CH4 production, and lower molar ratio of palladium which may let the cost decreasing also improves the overall performance.
摘要--------------i
Abstract---------ii
誌謝-------------iii
目錄---------------v
表目錄----------viii
圖目錄------------ix
第一章 緒論-------1
1.1 二氧化碳之轉化及利用------1
1.2 總結及異相催化簡介--------8
1.3 研究動機----------------11
第二章 文獻回顧----------------12
2.1 碳載體材料觸媒特性-------12
2.2 觸媒金屬主體特性研究-----18
2.3 回顧總結----------------32
第三章 實驗研究總論-------------33
3.1 實驗目的----------------33
3.2 實驗藥品----------------34
3.3 樣品合成過程-------------35
3.4 材料結構特性鑑定技術簡介--37
3.4.1 高解析穿透式電子顯微法----37
3.4.2 X光繞射分析法------------38
3.4.3 X光吸收光譜分析法---------40
3.4.4 X光光電子能譜法-----------44
3.4.5 感應耦合電漿放射光譜法-----45
3.5 電化學分析法--------------47
3.5.1 循環伏安法----------------49
3.5.2 電化學阻抗譜分析法---------51
3.5.3 一氧化碳吸脫附實驗---------55
3.6 實驗産物定性定量分析及氣相層析分離技術-----57
第四章 結果與討論-------------------------------60
4.1 實驗計劃簡介-----------------------------60
4.2 氧化鈷負載之鎳氧化物奈米觸媒 (CN NC) 結構與效能鑑定--62
4.2.1 CN NC之感應耦合電漿放射光譜測試結果-----------------62
4.2.2 CN NC之穿透式電子顯微鏡測試結果---------------------63
4.2.3 CN NC之X光繞射分析測試結果-------------------------70
4.2.4 CN NC之電化學循環伏安法測試結果---------------------73
4.2.5 CN NC之電化學一氧化碳脫附實驗測試結果----------------75
4.2.6 CN NC之電化學阻抗光譜測試結果-----------------------77
4.2.7 CN NC之X光吸收光譜-鈷吸收邊緣測試結果---------------78
4.2.8 CN NC之X光吸收光譜-鎳吸收邊緣測試結果---------------81
4.2.9 CN NC之X光光電子能譜儀-鈷2p軌域測試結果-------------84
4.2.10 CN NC之X光光電子能譜儀-鎳2p軌域測試結果-------------85
4.2.11 CN NC之二氧化碳甲烷化實驗産物分析結果----------------87
4.3 以不同比例鈀金屬附載於CN NC表面之三元觸媒結構與二氧化碳轉化效能分析結果--------90
4.3.1 CNP NC 之感應耦合電漿放射光譜測試結果----------------90
4.3.2 CNP NC之穿透式電子顯微鏡測試結果---------------------92
4.3.3 CNP NC之X光繞射分析測試結果-------------------------94
4.3.4 CNP NC之電化學循環伏安法測試結果---------------------97
4.3.5 CNP NC之電化學一氧化碳脫附實驗測試結果---------------99
4.3.6 CNP NC之電化學阻抗光譜測試結果----------------------100
4.3.7 CNP NC之X光吸收光譜-鈷吸收邊緣測試結果--------------101
4.3.8 CNP NC之X光吸收光譜-鎳吸收邊緣測試結果--------------103
4.3.9 CNP NC之X光吸收光譜-鈀吸收邊緣測試結果--------------105
4.3.10 CNP NC之X光光電子能譜儀-鈷2p軌域測試結果------------107
4.3.11 CNP NC之X光光電子能譜儀-鎳2p軌域測試結果------------108
4.3.12 CNP NC之X光光電子能譜儀-鈀3d軌域測試結果------------109
4.3.13 CNP NC之二氧化碳甲烷化實驗産物分析結果---------------110
第五章 結論-----------------------------------------------112
第六章 未來工作與建議--------------------------------------115
第七章 參考資料-------------------------------------------116
第八章 附錄-----------------------------------------------123
[1] Kumaravel V, Bartlett J, Pillai SC. “Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products.” ACS Energy Letters. 2020;5(2):486-519.
[2] Li J, Kuang Y, Meng Y, Tian X, Hung W-H, Zhang X, Li A, Xu M, Zhou W, Ku C-S, Chiang C-Y, Zhu G, Guo J, Sun X, Dai H. “Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency.” Journal of the American Chemical Society. 2020; 142(16), 7276-7282.
[3] Fan T, Liu H, Shao S, Gong Y, Li G, Tang Z. “Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: recent progress and perspective.” The Journal of Physical Chemistry Letters. 2021; 12(43), 10486-10496.
[4] Prins R, Wang A, Li X. Introduction to heterogeneous catalysis. Introduction to heterogeneous catalysis. 2016.
[5] Navarro J, Centeno M, Laguna O, Odriozola J. “Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. a review of the most recent advances.” Catalysts. 2018; 8(12), 578.
[6] Younas M, Loong Kong L, Bashir MJK, Nadeem H, Shehzad A, Sethupathi S. “Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2.” Energy & Fuels. 2016; 30(11), 8815-8831.
[7] Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. “A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts.” RSC Advances. 2018; 8(14), 7651-7669.
[8] Lachos-Perez D, Brown A, Mudhoo A, Timko M, Rostagno M, Forster-Carneiro T. “Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review.” Biofuel Research Journal. 2017; 4(2), 611-626.
[9] 馬振基。奈米材料科技原理與應用 (第二版)。;2015
[10] Iwanow M, Gärtner T, Sieber V, König B. “Activated carbon as catalyst support: precursors, preparation, modification and characterization.” Beilstein Journal of Organic Chemistry. 2020; 16, 1188-1202.
[11] Serp P, Figueiredo JL. Carbon Materials for Catalysis. John Wiley & Sons; 2009.
[12] Sarioğlan Şerife. “Recovery of Palladium from Spent Activated Carbon-Supported Palladium Catalysts.” Platinum Metals Review. 2013;57(4):289-296.
[13] Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J. “Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO2 Methanation.” Angewandte Chemie International Edition. 2020;59(34):14434-14442.
[14] Younas M, Sethupathi S, Kong LL, Mohamed AR. “CO2 methanation over Ni and Rh based catalysts: Process optimization at moderate temperature.” International Journal of Energy Research. 2018;42(10):3289-3302.
[15] Moreno-Castilla C, Carrasco-Marin F. “Cobalt catalysts supported on activated carbons: preparation and behaviour in the hydrogenation of carbon oxides.” Journal of the Chemical Society, Faraday Transactions. 1995;91(19):3519.
[16] Zhao B, Sun M, Chen F, Shi Y, Yu Y, Li X, Zhang B. “Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO2 to C2+ Hydrocarbons.” Angewandte Chemie International Edition. 2021;60(9):4496-4500.
[17] Galhardo TS, Braga AH, Arpini BH, Szanyi J, Gonçalves RV, Zornio BF, Miranda CR, Rossi LM. “Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts.” Journal of the American Chemical Society. 2021; 143(11), 4268-4280.
[18] Pei-You C, Sheng-Po W, Tsan-Yao C, Po-Chun C. “Temperature controlled atomic Ir-cluster decorated Nicore@Pdshell nanocatalyst for oxygen reduction reaction in alkaline electrolyte.” NSRRC. 2020.
[19] Le MC, Van KL, Nguyen THT, Nguyen NH. “The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO2 methanation of Ni/AC catalyst at low temperature.” Journal of Chemistry. 2017; 2017, 1-11.
[20] Efremova A, Rajkumar T, Szamosvölgyi Ákos, Sápi A, Baán K, Szenti I, Gómez-Pérez J, Varga G, Kiss J, Halasi G, Kukovecz Ákos, Kónya Z. “Complexity of a Co3O4 system under ambient - pressure CO2 methanation: influence of bulk and surface properties on the catalytic performance.” The Journal of Physical Chemistry C. 2021; 125(13), 7130-7141.
[21] Xu L, Lian X, Chen M, Cui Y, Wang F, Li W, Huang B. “CO2 methanation over Co Ni bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities.” International Journal of Hydrogen Energy. 2018; 43(36), 17172-17184.
[22] 穿透式電子顯微鏡. 科學Online:陳建淼;[accessed 2009 September 09]. https://highscope.ch.ntu.edu.tw/wordpress/?p=1599
[23] TEM用鍍碳銅網. 汎達科技股份有限公司;[accessed 2022 ]. https://www.pentad.com.tw/product/100
[24] X-光繞射與布拉格定律. 科學Online:張育唐;[accessed 2011 December 23]. https://highscope.ch.ntu.edu.tw/wordpress/?p=41141
[25] X-ray diffraction. Anton Paar; [accessed 2022 August 16]. https://wiki.anton-paar.com/en/x-ray-diffraction-xrd/
[26] Extended X-ray absorption fine structure. Wikiwand; [accessed 2022 August 16]. https://www.wikiwand.com/en/Extended_X-ray_absorption_fine_structure
[27] Nayak C, Jha SN, Bhattacharyya D. “In situ X-ray absorption spectroscopy to study growth of nanoparticles.” In-situ Characterization Techniques for Nanomaterials. 2018; , 189-222.
[28] J. C. Vickerman and I. S. Gilmore (eds.), "Surface Analysis-The Principal Techniques", 2nd ed., Wiley, 2009 .
[29] X-ray photoelectron spectroscopy. 오늘도 공대생의 눈물:SWYJ; [accessed 2022 April 30]. https://numong22.tistory.com/206
[30] Skoog DA, Holler FJ, Crouch SR. Principles of instrumental analysis. Principles of instrumental analysis. 2017
[31] Kumsa DW, Bhadra N, Hudak EM, Kelley SC, Untereker DF, Mortimer JT. “Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on thei(Ve) profile.” Journal of Neural Engineering. 2016; 13(5), 052001.
[32] 想学电化学阻抗谱? 这篇可能是目前最好的干货. 知乎: 圆的方块; [accessed 2022 August 16]. https://zhuanlan.zhihu.com/p/29092156
[33] 化学者のためのエレクトロニクス講座~電解で起こる現象編~. chem-station: berg; [accessed 2021 January 13]. https://www.chem-station.com/blog/2021/01/e11.html
[34] Bandapati M, Goel S, Krishnamurthy B. “Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell - Review.” Journal of Electrochemical Science and Engineering. 2019; 9(4), 281-310.
[35] Bhalothia D, Fan Y-J, Huang T-H, Lin Z-J, Yang Y-T, Wang K-W, Chen T-Y. “Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts.” The Journal of Physical Chemistry C. 2019;123(31):19013-19021.
[36] Bhalothia D, Huang T-H, Chou P-H, Chen P-C, Wang K-W, Chen T-Y. “CO-reductive and O2-oxidative annealing assisted surface restructure and corresponding formic acid oxidation performance of PdPt and PdRuPt nanocatalysts.” Scientific Reports. 2020; 10(1).
[37] Bhalothia D, Chou J-P, Yan C, Hu A, Yang Y-T, Chen T-Y. “Programming ORR activity of Ni/NiOx@Pd electrocatalysts via controlling depth of surface-decorated atomic Pt clusters.” ACS Omega. 2018; 3(8), 8733-8744.
[38] Bhalothia D, Chen P-C, Yan C, Wang K-W, Chen T-Y. “Heterogeneous NiO2-to-Pd Epitaxial Structure Performs Outstanding Oxygen Reduction Reaction Activity.” The Journal of Physical Chemistry C. 2019;124(4):2295-2306.
[39] Smyrnioti M, Ioannides T. Synthesis of Cobalt-Based Nanomaterials from Organic Precursors. Cobalt. 2017.
[40] Bhalothia D, Hsiung W-H, Yang S-S, Yan C, Chen P-C, Lin T-H, Wu S-C, Chen P-C, Wang K-W, Lin M-W, Chen T-Y. “Submillisecond laser annealing induced surface and subsurface restructuring of Cu–Ni–Pd trimetallic nanocatalyst promotes thermal CO2 reduction.” ACS Applied Energy Materials. 2021; 4(12), 14043-14058.
[41] Bhalothia D, Huang T-H, Chou P-H, Wang K-W, Chen T-Y. “Promoting formic acid oxidation performance of Pd nanoparticles via Pt and Ru atom mediated surface engineering.” RSC Advances. 2020;10(29):17302-17310.
[42] Bhalothia D, Yu Y-M, Lin Y-R, Huang T- H, Yan C, Lee J-F, Wang K-W, Chen T-Y. “NiOx-supported PtRh nanoalloy enables high-performance hydrogen evolution reaction under universal pH conditions.” Sustainable Energy & Fuels. 2021; 5(21), 5490-5504.
[43] Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MR. “Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption.” Journal of Environmental Chemical Engineering. 2020; 8(5), 104257.
[44] Ren J, Qin X, Yang J-Z, Qin Z-F, Guo H-L, Lin J-Y, Li Z. “Methanation of carbon dioxide over Ni–M/ZrO2 (M = Fe, Co, Cu) catalysts: effect of addition of a second metal.” Fuel Processing Technology. 2015; 137, 204-211.
[45] Chen C-X, Huang B, Li T, Wu G-F. “Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing.” BioResources. 2012; 7(4).
[46] Frontera P, Macario A, Ferraro M, Antonucci P. “Supported catalysts for CO2 Methanation: a review.” Catalysts. 2017; 7(12), 59.
[47] Liu X, Song Y, Geng W, Li H, Xiao L, Wu W. “Cu-Mo2C/MCM-41: an efficient catalyst for the selective synthesis of methanol from CO2.” Catalysts. 2016; 6(5), 75.
[48] Gonçalves LPL, Sousa JPS, Soares OSGP, Bondarchuk O, Lebedev OI, Kolen’ko YV, Pereira MFR. “The role of surface properties in CO2 methanation over carbon-supported Ni catalysts and their promotion by Fe.” Catalysis Science & Technology. 2020; 10(21), 7217-7225.
[49] Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J. “Surface iron species in palladium–iron intermetallic nanocrystals that promote and stabilize CO2 methanation.” Angewandte Chemie International Edition. 2020; 59(34), 14434-14442.
[50] Bhalothia D, Wang S-P, Lin S, Yan C, Wang K-W, Chen P-C. “Atomic Pt-clusters decoration triggers a high-rate performance on Ni@Pd bimetallic nanocatalyst for hydrogen evolution reaction in both alkaline and acidic medium.” Applied Sciences. 2020; 10(15), 5155.
[51] Bhalothia D, Krishnia L, Yang S-S, Yan C, Hsiung W-H, Wang K-W, Chen T-Y. “Recent advancements and future prospects of noble metal-based heterogeneous nanocatalysts for oxygen reduction and hydrogen evolution reactions.” Applied Sciences. 2020; 10(21), 7708.
[52] Martins JA, Faria AC, Soria MA, Miguel CV, Rodrigues AE, Madeira LM. “CO2 methanation over hydrotalcite-derived nickel/ruthenium and supported ruthenium catalysts.” Catalysts. 2019; 9(12), 1008.
[53] Li X, Wang Y, Zhang G, Sun W, Bai Y, Zheng L, Han X, Wu L. “Influence of Mg-promoted Ni-based catalyst supported on coconut shell carbon for CO2 methanation.” ChemistrySelect. 2019; 4(3), 838-845.
[54] Kwak JH, Kovarik L, Szanyi J. “Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts.” ACS Catalysis. 2013; 3(9), 2094-2100.
[55] Chen X, Chen Y, Song C, Ji P, Wang N, Wang W, Cui L. “Recent advances in supported metal catalysts and oxide catalysts for the reverse water - gas shift reaction.” Frontiers in Chemistry. 2020; 8.
[56] Albuquerque JS, Costa FO, Barbosa BVS. “Fischer–tropsch synthesis: analysis of products by anderson–schulz–flory distribution using promoted cobalt catalyst.” Catalysis Letters. 2019; 149(3), 831-839.
[57] Polanski J, Lach D, Kapkowski M, Bartczak P, Siudyga T, Smolinski A. “Ru and Ni—privileged metal combination for environmental nanocatalysis.” Catalysts. 2020; 10(9), 992.
(此全文20250902後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *