|
[1] Kumaravel V, Bartlett J, Pillai SC. “Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products.” ACS Energy Letters. 2020;5(2):486-519. [2] Li J, Kuang Y, Meng Y, Tian X, Hung W-H, Zhang X, Li A, Xu M, Zhou W, Ku C-S, Chiang C-Y, Zhu G, Guo J, Sun X, Dai H. “Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency.” Journal of the American Chemical Society. 2020; 142(16), 7276-7282. [3] Fan T, Liu H, Shao S, Gong Y, Li G, Tang Z. “Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: recent progress and perspective.” The Journal of Physical Chemistry Letters. 2021; 12(43), 10486-10496. [4] Prins R, Wang A, Li X. Introduction to heterogeneous catalysis. Introduction to heterogeneous catalysis. 2016. [5] Navarro J, Centeno M, Laguna O, Odriozola J. “Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. a review of the most recent advances.” Catalysts. 2018; 8(12), 578. [6] Younas M, Loong Kong L, Bashir MJK, Nadeem H, Shehzad A, Sethupathi S. “Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2.” Energy & Fuels. 2016; 30(11), 8815-8831. [7] Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. “A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts.” RSC Advances. 2018; 8(14), 7651-7669. [8] Lachos-Perez D, Brown A, Mudhoo A, Timko M, Rostagno M, Forster-Carneiro T. “Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review.” Biofuel Research Journal. 2017; 4(2), 611-626. [9] 馬振基。奈米材料科技原理與應用 (第二版)。;2015 [10] Iwanow M, Gärtner T, Sieber V, König B. “Activated carbon as catalyst support: precursors, preparation, modification and characterization.” Beilstein Journal of Organic Chemistry. 2020; 16, 1188-1202. [11] Serp P, Figueiredo JL. Carbon Materials for Catalysis. John Wiley & Sons; 2009. [12] Sarioğlan Şerife. “Recovery of Palladium from Spent Activated Carbon-Supported Palladium Catalysts.” Platinum Metals Review. 2013;57(4):289-296. [13] Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J. “Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO2 Methanation.” Angewandte Chemie International Edition. 2020;59(34):14434-14442. [14] Younas M, Sethupathi S, Kong LL, Mohamed AR. “CO2 methanation over Ni and Rh based catalysts: Process optimization at moderate temperature.” International Journal of Energy Research. 2018;42(10):3289-3302. [15] Moreno-Castilla C, Carrasco-Marin F. “Cobalt catalysts supported on activated carbons: preparation and behaviour in the hydrogenation of carbon oxides.” Journal of the Chemical Society, Faraday Transactions. 1995;91(19):3519. [16] Zhao B, Sun M, Chen F, Shi Y, Yu Y, Li X, Zhang B. “Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO2 to C2+ Hydrocarbons.” Angewandte Chemie International Edition. 2021;60(9):4496-4500. [17] Galhardo TS, Braga AH, Arpini BH, Szanyi J, Gonçalves RV, Zornio BF, Miranda CR, Rossi LM. “Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts.” Journal of the American Chemical Society. 2021; 143(11), 4268-4280. [18] Pei-You C, Sheng-Po W, Tsan-Yao C, Po-Chun C. “Temperature controlled atomic Ir-cluster decorated Nicore@Pdshell nanocatalyst for oxygen reduction reaction in alkaline electrolyte.” NSRRC. 2020. [19] Le MC, Van KL, Nguyen THT, Nguyen NH. “The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO2 methanation of Ni/AC catalyst at low temperature.” Journal of Chemistry. 2017; 2017, 1-11. [20] Efremova A, Rajkumar T, Szamosvölgyi Ákos, Sápi A, Baán K, Szenti I, Gómez-Pérez J, Varga G, Kiss J, Halasi G, Kukovecz Ákos, Kónya Z. “Complexity of a Co3O4 system under ambient - pressure CO2 methanation: influence of bulk and surface properties on the catalytic performance.” The Journal of Physical Chemistry C. 2021; 125(13), 7130-7141. [21] Xu L, Lian X, Chen M, Cui Y, Wang F, Li W, Huang B. “CO2 methanation over Co Ni bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities.” International Journal of Hydrogen Energy. 2018; 43(36), 17172-17184. [22] 穿透式電子顯微鏡. 科學Online:陳建淼;[accessed 2009 September 09]. https://highscope.ch.ntu.edu.tw/wordpress/?p=1599 [23] TEM用鍍碳銅網. 汎達科技股份有限公司;[accessed 2022 ]. https://www.pentad.com.tw/product/100 [24] X-光繞射與布拉格定律. 科學Online:張育唐;[accessed 2011 December 23]. https://highscope.ch.ntu.edu.tw/wordpress/?p=41141 [25] X-ray diffraction. Anton Paar; [accessed 2022 August 16]. https://wiki.anton-paar.com/en/x-ray-diffraction-xrd/ [26] Extended X-ray absorption fine structure. Wikiwand; [accessed 2022 August 16]. https://www.wikiwand.com/en/Extended_X-ray_absorption_fine_structure [27] Nayak C, Jha SN, Bhattacharyya D. “In situ X-ray absorption spectroscopy to study growth of nanoparticles.” In-situ Characterization Techniques for Nanomaterials. 2018; , 189-222. [28] J. C. Vickerman and I. S. Gilmore (eds.), "Surface Analysis-The Principal Techniques", 2nd ed., Wiley, 2009 . [29] X-ray photoelectron spectroscopy. 오늘도 공대생의 눈물:SWYJ; [accessed 2022 April 30]. https://numong22.tistory.com/206 [30] Skoog DA, Holler FJ, Crouch SR. Principles of instrumental analysis. Principles of instrumental analysis. 2017 [31] Kumsa DW, Bhadra N, Hudak EM, Kelley SC, Untereker DF, Mortimer JT. “Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on thei(Ve) profile.” Journal of Neural Engineering. 2016; 13(5), 052001. [32] 想学电化学阻抗谱? 这篇可能是目前最好的干货. 知乎: 圆的方块; [accessed 2022 August 16]. https://zhuanlan.zhihu.com/p/29092156 [33] 化学者のためのエレクトロニクス講座~電解で起こる現象編~. chem-station: berg; [accessed 2021 January 13]. https://www.chem-station.com/blog/2021/01/e11.html [34] Bandapati M, Goel S, Krishnamurthy B. “Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell - Review.” Journal of Electrochemical Science and Engineering. 2019; 9(4), 281-310. [35] Bhalothia D, Fan Y-J, Huang T-H, Lin Z-J, Yang Y-T, Wang K-W, Chen T-Y. “Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts.” The Journal of Physical Chemistry C. 2019;123(31):19013-19021. [36] Bhalothia D, Huang T-H, Chou P-H, Chen P-C, Wang K-W, Chen T-Y. “CO-reductive and O2-oxidative annealing assisted surface restructure and corresponding formic acid oxidation performance of PdPt and PdRuPt nanocatalysts.” Scientific Reports. 2020; 10(1). [37] Bhalothia D, Chou J-P, Yan C, Hu A, Yang Y-T, Chen T-Y. “Programming ORR activity of Ni/NiOx@Pd electrocatalysts via controlling depth of surface-decorated atomic Pt clusters.” ACS Omega. 2018; 3(8), 8733-8744. [38] Bhalothia D, Chen P-C, Yan C, Wang K-W, Chen T-Y. “Heterogeneous NiO2-to-Pd Epitaxial Structure Performs Outstanding Oxygen Reduction Reaction Activity.” The Journal of Physical Chemistry C. 2019;124(4):2295-2306. [39] Smyrnioti M, Ioannides T. Synthesis of Cobalt-Based Nanomaterials from Organic Precursors. Cobalt. 2017. [40] Bhalothia D, Hsiung W-H, Yang S-S, Yan C, Chen P-C, Lin T-H, Wu S-C, Chen P-C, Wang K-W, Lin M-W, Chen T-Y. “Submillisecond laser annealing induced surface and subsurface restructuring of Cu–Ni–Pd trimetallic nanocatalyst promotes thermal CO2 reduction.” ACS Applied Energy Materials. 2021; 4(12), 14043-14058. [41] Bhalothia D, Huang T-H, Chou P-H, Wang K-W, Chen T-Y. “Promoting formic acid oxidation performance of Pd nanoparticles via Pt and Ru atom mediated surface engineering.” RSC Advances. 2020;10(29):17302-17310. [42] Bhalothia D, Yu Y-M, Lin Y-R, Huang T- H, Yan C, Lee J-F, Wang K-W, Chen T-Y. “NiOx-supported PtRh nanoalloy enables high-performance hydrogen evolution reaction under universal pH conditions.” Sustainable Energy & Fuels. 2021; 5(21), 5490-5504. [43] Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MR. “Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption.” Journal of Environmental Chemical Engineering. 2020; 8(5), 104257. [44] Ren J, Qin X, Yang J-Z, Qin Z-F, Guo H-L, Lin J-Y, Li Z. “Methanation of carbon dioxide over Ni–M/ZrO2 (M = Fe, Co, Cu) catalysts: effect of addition of a second metal.” Fuel Processing Technology. 2015; 137, 204-211. [45] Chen C-X, Huang B, Li T, Wu G-F. “Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing.” BioResources. 2012; 7(4). [46] Frontera P, Macario A, Ferraro M, Antonucci P. “Supported catalysts for CO2 Methanation: a review.” Catalysts. 2017; 7(12), 59. [47] Liu X, Song Y, Geng W, Li H, Xiao L, Wu W. “Cu-Mo2C/MCM-41: an efficient catalyst for the selective synthesis of methanol from CO2.” Catalysts. 2016; 6(5), 75. [48] Gonçalves LPL, Sousa JPS, Soares OSGP, Bondarchuk O, Lebedev OI, Kolen’ko YV, Pereira MFR. “The role of surface properties in CO2 methanation over carbon-supported Ni catalysts and their promotion by Fe.” Catalysis Science & Technology. 2020; 10(21), 7217-7225. [49] Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J. “Surface iron species in palladium–iron intermetallic nanocrystals that promote and stabilize CO2 methanation.” Angewandte Chemie International Edition. 2020; 59(34), 14434-14442. [50] Bhalothia D, Wang S-P, Lin S, Yan C, Wang K-W, Chen P-C. “Atomic Pt-clusters decoration triggers a high-rate performance on Ni@Pd bimetallic nanocatalyst for hydrogen evolution reaction in both alkaline and acidic medium.” Applied Sciences. 2020; 10(15), 5155. [51] Bhalothia D, Krishnia L, Yang S-S, Yan C, Hsiung W-H, Wang K-W, Chen T-Y. “Recent advancements and future prospects of noble metal-based heterogeneous nanocatalysts for oxygen reduction and hydrogen evolution reactions.” Applied Sciences. 2020; 10(21), 7708. [52] Martins JA, Faria AC, Soria MA, Miguel CV, Rodrigues AE, Madeira LM. “CO2 methanation over hydrotalcite-derived nickel/ruthenium and supported ruthenium catalysts.” Catalysts. 2019; 9(12), 1008. [53] Li X, Wang Y, Zhang G, Sun W, Bai Y, Zheng L, Han X, Wu L. “Influence of Mg-promoted Ni-based catalyst supported on coconut shell carbon for CO2 methanation.” ChemistrySelect. 2019; 4(3), 838-845. [54] Kwak JH, Kovarik L, Szanyi J. “Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts.” ACS Catalysis. 2013; 3(9), 2094-2100. [55] Chen X, Chen Y, Song C, Ji P, Wang N, Wang W, Cui L. “Recent advances in supported metal catalysts and oxide catalysts for the reverse water - gas shift reaction.” Frontiers in Chemistry. 2020; 8. [56] Albuquerque JS, Costa FO, Barbosa BVS. “Fischer–tropsch synthesis: analysis of products by anderson–schulz–flory distribution using promoted cobalt catalyst.” Catalysis Letters. 2019; 149(3), 831-839. [57] Polanski J, Lach D, Kapkowski M, Bartczak P, Siudyga T, Smolinski A. “Ru and Ni—privileged metal combination for environmental nanocatalysis.” Catalysts. 2020; 10(9), 992.
|