帳號:guest(3.22.74.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):珍娜瑪諾
作者(外文):Manio, Jenna Riscy
論文名稱(中文):玉米農業資材生物炭與鎳鈷氧化物複合材料之高效能非對稱電容脫鹽研究
論文名稱(外文):Two-way valorization of waste corn cob into functionalized biochar and nickel cobaltite scaffold for high performance desalination via asymmetric capacitive deionization
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):蘇鎮芳
官韋帆
王清海
口試委員(外文):Su, Jenn-Fang
Kuan, Wei-Fan
Wang, Tsing-Hai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分析與環境科學研究所
學號:109015423
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:160
中文關鍵詞:非對稱電容去離子(CDI)功能化生物炭生物炭支架尖晶石氧化物鎳鈷礦(NiCo2O4)尖晶石氧化物-生物炭複合材料
外文關鍵詞:Asymmetric capacitive deionization (CDI)functionalized biocharbiochar scaffoldspinel oxidenickel cobaltite (NiCo2O4)spinel – oxide@biochar composite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究通過開發非對稱電容去離子(CDI)系統展示了一種綜合水處理方法。 農業廢棄玉米芯被用作生物炭合成的原料,有助於減少廢物的產生。 此外,這項研究還選擇了低成本的鎳鈷礦(NiCo2O4),一種天然豐富的尖晶石氧化物充當具有高電吸附和能量回收潛力的材料的前驅物。接著, 採用一步法活化生物炭合成結合濃硝酸(HNO3)功能修飾技術,生產出高比表面積(1,020 m2 / g)和高比電容(200.3 F / g)的生物炭(fB)。然後,該生物炭被用作NiCo2O4(NCO@fB)納米花的導電支架,通過簡單的水熱合成出具有豐富電活性位點的複合材料。 隨後,將生物炭和NCO@fB組裝在一起,分別用作不對稱CDI裝置的陽極和陰極。 最后,該系統的脫鹽性能檢查是以固定的進料溶液濃度(20 mM NaCl),但不同的施加電壓(1.0, 1.2 和1.4 V)和進料流速(10和15 mL / min),在間歇模式下進行。 此1.4 V – 10 mL/min CDI裝置能夠以74.44 ± 14.05 mg / g比電吸附電容(SEC)和18.35 ± 2.07 mg / g比電吸附率(SER)實現高脫鹽和高速率性能。 此外,這項工作也可視為開發尖晶石型金屬用於苦鹹水淡化,oxide@biochar複合材料的基礎研究。 此 CDI 設置的相應充電效率 (CE) 和比能耗 (E) 分別為 127.9 ± 7.63% 和 0.40 ± 0.05 kWh/kg 的鹽。

關鍵詞: 非對稱電容去離子(CDI),功能化生物炭,生物炭支架,尖晶石氧化物,鎳鈷礦(NiCo2O4),尖晶石氧化物-生物炭複合材料
This study demonstrates an integrated approach for water treatment by developing an asymmetric capacitive deionization (CDI) system. Agricultural waste corncob was used as raw material for biochar synthesis to help ease waste generation. Also, low-cost nickel cobaltite (NiCo2O4), a spinel oxide from naturally abundant precursors, was chosen to represent materials with high potential for electrosorption processes and energy recovery. One-step activated biochar synthesis coupled with concentrated nitric acid (HNO3) functionalization was employed to generate high surface area (1,020 m2/g) and high specific capacitance (200.3 F/g) biochar (fB). This biochar was then used as the conductive scaffold for NiCo2O4 (NCO@fB) nanoflowers with rich electroactive sites via simple hydrothermal synthesis. The asymmetric CDI setup was assembled with the biochar and NCO@fB acting as anode and cathode respectively. This system was examined with a feed of 20 mM NaCl solution under varied applied voltages (1.0 V, 1,2 and 1.4 V) and feed flowrates (10 and 15 mL/min) in batch mode. The 1.4 V – 10 mL/min CDI setup was able to achieve high desalination and high-rate performance with 74.44 ± 14.05 mg/g specific electrosorption capacitance (SEC) and 18.35 ± 2.07 mg/g specific electrosorption rate (SER). The corresponding charge efficiency (CE) and specific energy consumption (E) at this CDI setup are 127.9 ± 7.63% and 0.40 ± 0.05 kWh/kg of salt respectively. Furthermore, this work serves as a foundational study for developing spinel type metal – oxide@biochar composites for brackish water desalination.

Keywords: Asymmetric capacitive deionization (CDI), functionalized biochar, biochar scaffold, spinel oxide, nickel cobaltite (NiCo2O4), spinel – oxide@biochar composite
中文摘要 II
ABSTRACT III
ACKNOWLEDGMENT IV
TABLE OF CONTENTS V
LIST OF TABLES IX
LIST OF FIGURES XI
LIST OF APPENDICES XVI
LIST OF APPENDIX TABLES XVII
LIST OF APPENDIX FIGURES XVIII
1. INTRODUCTION 1
1.1 Background and Significance of the Study 1
1.1.1 Diversifying solutions to water crisis 2
1.1.2 Influencing technological standpoint 3
1.2 Motivation of the Study 4
1.3 Objectives and Scope 7
2. REVIEW OF LITERATURE 9
2.1. Integrative Approaches on Solving the Water Crisis 9
2.1.1 Refining terminologies for navigating water-related situations 9
2.1.2 Sustainability and nexus thinking 11
2.1.3 Treatment technologies and prospects 13
2.2. Capacitive Deionization 15
2.2.1 Basic principles 15
2.2.2 Electrode materials and ion storage mechanisms 17
2.2.3 System architectures: modifications on configurations 19
Membrane CDI (mCDI) 22
Flow CDI (fCDI) 24
Hybrid CDI (hCDI) 25
Faradaic Electrochemical Desalination (FDI) systems 26
Rocking chair CDI (RCDI). 27
Desalination batteries 29
2.2.4 Outlook for CDI 31
Developmental trends 31
Comparisons and hybrids with other technologies. 32
2.2.5 Performance determinants 39
Material characteristics 41
Material performance indicators 43
Cell characteristics 46
Operating conditions 47
2.2.6 CDI performance metrics 50
2.3. Biochar as Electrosorption Material for Capacitive Deionization 53
2.3.1 Biochar – a value-added product from biomass valorization 53
2.3.2 Performance in capacitive deionization 55
Important material properties 56
Influence of material choice, synthesis and activation 57
Existing biochar utilization in CDI 60
2.4. Nickel Cobaltite at Early Stages of Capacitive Deionization Studies 63
2.4.1 Nickel cobaltite properties and synthesis 63
2.4.2 Spinel metal oxides for capacitive deionization 64
2.5. Corncob Biochar – Nickel Cobaltite Composite for Capacitive Deionization 66
2.5.2 Corncob as feedstock for biochar synthesis 67
2.5.3 Nickel cobaltite anchored on conductive supports 69
2.5.4 NCO@biochar composite for capacitive deionization 70
3. MATERIALS AND METHODS 71
3.1. Reagents 71
3.2. Experimental Flowchart 71
3.3. Biochar 72
3.3.1 Biochar design parameters 72
3.3.2 Biochar synthesis 73
One-step synthesis of activated biochar 73
Functionalization of activated biochar 74
3.4. Nickel Cobaltite on Functionalized Biochar 75
3.5. Material Characterization 76
3.6. Electrochemical Performance Tests 77
3.6.1. Material preparation 77
3.6.2. Cyclic voltammetry and electrochemical impedance spectroscopy 77
3.7. Capacitive Deionization 78
3.7.1. Experimental 78
3.7.2. Parametric study 80
3.7.3. Performance matrix 81
4. RESULTS AND DISCUSSION 83
4.1. Biochar Design 84
4.1.1. General observations on surface and structure 84
4.1.2. Individual and interaction of parameter effects on biochar characteristics 89
4.1.3. Functionality 93
4.1.4. Electrochemical performance 95
Effect of surface and structural characteristics of biochar 99
Effect of functionalization 100
4.1.5. Summary of biochar design 102
4.2. NCO@fB nanocomposite 103
4.2.1. Characterization 103
4.2.2. Electrochemical performance 110
4.3. Capacitive deionization performance 116
4.3.1. Desalination capacity and kinetics 116
4.3.2. Effect of parameters on material performance 120
4.3.3. Energy performance 122
4.3.4. Desalination mechanism 128
5. SUMMARY AND CONCLUSION 131
6. REFERENCES 133
APPENDICES 150
APPENDIX A 150
APPENDIX B 154
APPENDIX C 155
APPENDIX D 157
APPENDIX E 159
APPENDIX F 160

[1] A. Mauroner, I. Timboe, J. Matthews, J. Taganova, and A. Mishra, “Planning Water Resilience from the Bottom-Up to Meet Climate and Development Goals,” Paris, France and Corvallis, USA, 2021.
[2] S. and C. O. (UNESCO) United Nations Educational and UN-Water, “United Nations World Water Development Report 2020: Water and Climate Change,” Paris, 2020.
[3] S. and C. O. (UNESCO) United Nations Educational and UNESCO International Centre for Water Security and Sustainable Management (i-WSSM), “Water Reuse within a Circular Economy Context (Series II),” Paris, 2020.
[4] United Nations, “Transforming our world: the 2030 Agenda for Sustainable Development,” 2015. https://wedocs.unep.org/20.500.11822/9814. (accessed Jun. 01, 2022).
[5] W. J. Cosgrove and F. R. Rijsberman, World Water Vision. London: Earthscan Publications Ltd, 2000.
[6] B. Han, G. Cheng, Y. Wang, and X. Wang, “Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization,” Chemical Engineering Journal, vol. 360, pp. 364–384, Mar. 2019, doi: 10.1016/j.cej.2018.11.236.
[7] J. Choi, P. Dorji, H. K. Shon, and S. Hong, “Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency,” Desalination, vol. 449, pp. 118–130, Jan. 2019, doi: 10.1016/j.desal.2018.10.013.
[8] W. Xing et al., “Versatile applications of capacitive deionization (CDI)-based technologies,” Desalination, vol. 482, p. 114390, May 2020, doi: 10.1016/j.desal.2020.114390.
[9] Cobalt Institute, “Cobalt Mining,” 2020. https://www.cobaltinstitute.org/about-cobalt/cobalt-life-cycle/cobalt-mining/ (accessed Jun. 02, 2022).
[10] P. Schulte and J. Morrison, “Driving Harmonization of Water-Related Terminology,” Oakland, Sep. 2014.
[11] UN-Water, “Water, Food and Energy,” 2021. https://www.unwater.org/water-facts/water-food-and-energy/ (accessed May 21, 2022).
[12] C. Copeland and N. Carter, “Energy-Water Nexus: The Water Sector’s Energy Use,” Jan. 2017.
[13] Z. Usmani et al., “Minimizing hazardous impact of food waste in a circular economy – Advances in resource recovery through green strategies,” Journal of Hazardous Materials, vol. 416, p. 126154, Aug. 2021, doi: 10.1016/j.jhazmat.2021.126154.
[14] U.S. Department of Energy, “The Water-Energy Nexus: Challenges and Opportunities Overview and Summary,” Jun. 2014. Accessed: May 21, 2022. [Online]. Available: https://tim155-spring17-01.courses.soe.ucsc.edu/system/files/attachments/USDOE%20-%20The%20Water-Energy%20Nexus%20June%202014.pdf
[15] M. A. Ahmed and S. Tewari, “Capacitive deionization: Processes, materials and state of the technology,” Journal of Electroanalytical Chemistry, vol. 813, pp. 178–192, Mar. 2018, doi: 10.1016/j.jelechem.2018.02.024.
[16] A. Suresh, G. T. Hill, E. Hoenig, and C. Liu, “Electrochemically mediated deionization: a review,” Molecular Systems Design & Engineering, vol. 6, no. 1, pp. 25–51, 2021, doi: 10.1039/D0ME00090F.
[17] Z. Liu and H. Li, “Exploration of the Exceptional Capacitive Deionization Performance of CoMn2O4 Microspheres Electrode,” ENERGY & ENVIRONMENTAL MATERIALS, Jan. 2022, doi: 10.1002/eem2.12255.
[18] X. Zhao, H. Wei, H. Zhao, Y. Wang, and N. Tang, “Electrode materials for capacitive deionization: A review,” Journal of Electroanalytical Chemistry, vol. 873, p. 114416, Sep. 2020, doi: 10.1016/j.jelechem.2020.114416.
[19] T. S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, and Y. Gogotsi, “Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems,” Advanced Energy Materials, vol. 9, no. 39, p. 1902007, Oct. 2019, doi: 10.1002/aenm.201902007.
[20] W. Tang et al., “Various cell architectures of capacitive deionization: Recent advances and future trends,” Water Research, vol. 150, pp. 225–251, Mar. 2019, doi: 10.1016/j.watres.2018.11.064.
[21] Y. Liu et al., “Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials,” ACS Nano, vol. 15, no. 9, pp. 13924–13942, Sep. 2021, doi: 10.1021/acsnano.1c03417.
[22] B. Zhang, A. Boretti, and S. Castelletto, “Mxene pseudocapacitive electrode material for capacitive deionization,” Chemical Engineering Journal, vol. 435, p. 134959, May 2022, doi: 10.1016/j.cej.2022.134959.
[23] G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, and F. Zaviska, “Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization,” Membranes (Basel), vol. 10, no. 5, p. 96, May 2020, doi: 10.3390/membranes10050096.
[24] S. Dahiya, A. Singh, and B. K. Mishra, “Capacitive deionized hybrid systems for wastewater treatment and desalination: A review on synergistic effects, mechanisms and challenges,” Chemical Engineering Journal, vol. 417, p. 128129, Aug. 2021, doi: 10.1016/j.cej.2020.128129.
[25] Y. Zhang, L. Wang, W. Sun, Y. Hu, and H. Tang, “Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review,” Journal of Industrial and Engineering Chemistry, vol. 81, pp. 7–23, Jan. 2020, doi: 10.1016/j.jiec.2019.09.002.
[26] C. Zhang et al., “Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives,” Environmental Science & Technology, vol. 55, no. 8, pp. 4243–4267, Apr. 2021, doi: 10.1021/acs.est.0c06552.
[27] C. Zhang, L. Wu, J. Ma, M. Wang, J. Sun, and T. D. Waite, “Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters,” Water Research, vol. 173, p. 115580, Apr. 2020, doi: 10.1016/j.watres.2020.115580.
[28] D.-H. Nam, M. A. Lumley, and K.-S. Choi, “Electrochemical Redox Cells Capable of Desalination and Energy Storage: Addressing Challenges of the Water–Energy Nexus,” ACS Energy Letters, vol. 6, no. 3, pp. 1034–1044, Mar. 2021, doi: 10.1021/acsenergylett.0c02399.
[29] M. al Radi, E. T. Sayed, H. Alawadhi, and M. A. Abdelkareem, “Progress in energy recovery and graphene usage in capacitive deionization,” Critical Reviews in Environmental Science and Technology, pp. 1–57, Apr. 2021, doi: 10.1080/10643389.2021.1902698.
[30] A. M. Pernía, J. G. Norniella, J. A. Martín-Ramos, J. Díaz, and J. A. Martínez, “Up–Down Converter for Energy Recovery in a CDI Desalination System,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3257–3265, Jul. 2012, doi: 10.1109/TPEL.2011.2180926.
[31] G. L. Andres and Y. Yoshihara, “A capacitive deionization system with high energy recovery and effective re-use,” Energy, vol. 103, pp. 605–617, May 2016, doi: 10.1016/j.energy.2016.03.021.
[32] L. Wang, Y. Zhang, K. Moh, and V. Presser, “From capacitive deionization to desalination batteries and desalination fuel cells,” Current Opinion in Electrochemistry, vol. 29, p. 100758, Oct. 2021, doi: 10.1016/j.coelec.2021.100758.
[33] S. A. Romo, N. Mattise, and J. Srebric, “Desalination metamodels and a framework for cross-comparative performance simulations,” Desalination, vol. 525, p. 115474, Mar. 2022, doi: 10.1016/j.desal.2021.115474.
[34] Voltea B.V., “CapDI© SYSTEMS TECHNICAL SPECIFICATIONS.” 2020. Accessed: Jun. 03, 2022. [Online]. Available: https://voltea.com/products/
[35] Atlantis Technologies, “Technology: RDITM Desalination System,” 2022. https://www.atlantis-water.com/rdi-desalination-system-2/ (accessed Jun. 03, 2022).
[36] SionTech Co. Ltd., “SDI: Industries, SDITM System ,” 2021. https://www.siontech.com/english/sdi_industrial (accessed Jun. 03, 2022).
[37] M. Qin et al., “Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis,” Desalination, vol. 455, pp. 100–114, Apr. 2019, doi: 10.1016/j.desal.2019.01.003.
[38] A. Ramachandran, D. I. Oyarzun, S. A. Hawks, P. G. Campbell, M. Stadermann, and J. G. Santiago, “Comments on ‘Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis,’” Desalination, vol. 461, pp. 30–36, Jul. 2019, doi: 10.1016/j.desal.2019.03.010.
[39] S. Porada, L. Zhang, and J. E. Dykstra, “Energy consumption in membrane capacitive deionization and comparison with reverse osmosis,” Desalination, vol. 488, p. 114383, Aug. 2020, doi: 10.1016/j.desal.2020.114383.
[40] M. Metzger et al., “Techno-economic analysis of capacitive and intercalative water deionization,” Energy & Environmental Science, vol. 13, no. 6, pp. 1544–1560, 2020, doi: 10.1039/D0EE00725K.
[41] J. Elisadiki and C. K. King’ondu, “Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review,” Journal of Electroanalytical Chemistry, vol. 878, p. 114588, Dec. 2020, doi: 10.1016/j.jelechem.2020.114588.
[42] A. Balducci, D. Belanger, T. Brousse, J. W. Long, and W. Sugimoto, “Perspective—A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices,” Journal of The Electrochemical Society, vol. 164, no. 7, pp. A1487–A1488, May 2017, doi: 10.1149/2.0851707jes.
[43] S. A. Hawks et al., “Performance metrics for the objective assessment of capacitive deionization systems,” Water Research, vol. 152, pp. 126–137, Apr. 2019, doi: 10.1016/j.watres.2018.10.074.
[44] S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, “Review on the science and technology of water desalination by capacitive deionization,” Progress in Materials Science, vol. 58, no. 8, pp. 1388–1442, Oct. 2013, doi: 10.1016/j.pmatsci.2013.03.005.
[45] P. Zhang, J. Li, and M. B. Chan-Park, “Hierarchical Porous Carbon for High-Performance Capacitive Desalination of Brackish Water,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 25, pp. 9291–9300, Jun. 2020, doi: 10.1021/acssuschemeng.0c00515.
[46] M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, “Water desalination via capacitive deionization: what is it and what can we expect from it?,” Energy & Environmental Science, vol. 8, no. 8, pp. 2296–2319, 2015, doi: 10.1039/C5EE00519A.
[47] L. Wang, J. E. Dykstra, and S. Lin, “Energy Efficiency of Capacitive Deionization,” Environmental Science & Technology, vol. 53, no. 7, pp. 3366–3378, Apr. 2019, doi: 10.1021/acs.est.8b04858.
[48] Z. Liu, W. Xi, and H. Li, “The feasibility of hollow echinus-like NiCo 2 O 4 nanocrystals for hybrid capacitive deionization,” Environmental Science: Water Research & Technology, vol. 6, no. 2, pp. 283–289, 2020, doi: 10.1039/C9EW00939F.
[49] J. Ma, Y. Xiong, X. Dai, and F. Yu, “Zinc Spinel Ferrite Nanoparticles as a Pseudocapacitive Electrode with Ultrahigh Desalination Capacity and Long-Term Stability,” Environmental Science & Technology Letters, vol. 7, no. 2, pp. 118–125, Feb. 2020, doi: 10.1021/acs.estlett.0c00027.
[50] B. B. Arnold and G. W. Murphy, “STUDIES ON THE ELECTROCHEMISTRY OF CARBON AND CHEMICALLY-MODIFIED CARBON SURFACES,” The Journal of Physical Chemistry, vol. 65, no. 1, pp. 135–138, Jan. 1961, doi: 10.1021/j100819a038.
[51] M. M. Yeganeh, T. Kaghazchi, and M. Soleimani, “Effect of Raw Materials on Properties of Activated Carbons,” Chemical Engineering & Technology, vol. 29, no. 10, pp. 1247–1251, Oct. 2006, doi: 10.1002/ceat.200500298.
[52] D. V. Cuong et al., “A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage,” Renewable and Sustainable Energy Reviews, vol. 145, p. 111029, Jul. 2021, doi: 10.1016/j.rser.2021.111029.
[53] B. Song, R. Lin, C. H. Lam, H. Wu, T.-H. Tsui, and Y. Yu, “Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques,” Renewable and Sustainable Energy Reviews, vol. 135, p. 110370, Jan. 2021, doi: 10.1016/j.rser.2020.110370.
[54] H. Kargbo, J. S. Harris, and A. N. Phan, “‘Drop-in’ fuel production from biomass: Critical review on techno-economic feasibility and sustainability,” Renewable and Sustainable Energy Reviews, vol. 135, p. 110168, Jan. 2021, doi: 10.1016/j.rser.2020.110168.
[55] P. Ning et al., “Recent advances in the valorization of plant biomass,” Biotechnology for Biofuels, vol. 14, no. 1, p. 102, Dec. 2021, doi: 10.1186/s13068-021-01949-3.
[56] L. Qin, Y. Wu, Z. Hou, and E. Jiang, “Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells,” Bioresource Technology, vol. 313, p. 123682, Oct. 2020, doi: 10.1016/j.biortech.2020.123682.
[57] A. M. Dehkhoda, N. Ellis, and E. Gyenge, “Electrosorption on activated biochar: effect of thermo-chemical activation treatment on the electric double layer capacitance,” Journal of Applied Electrochemistry, vol. 44, no. 1, pp. 141–157, Jan. 2014, doi: 10.1007/s10800-013-0616-4.
[58] J. Lim, Y.-U. Shin, and S. Hong, “Enhanced capacitive deionization using a biochar-integrated novel flow-electrode,” Desalination, vol. 528, p. 115636, Apr. 2022, doi: 10.1016/j.desal.2022.115636.
[59] H. Stephanie, T. E. Mlsna, and D. O. Wipf, “Functionalized biochar electrodes for asymmetrical capacitive deionization,” Desalination, vol. 516, p. 115240, Nov. 2021, doi: 10.1016/j.desal.2021.115240.
[60] T. Wu, G. Wang, Q. Dong, B. Qian, Y. Meng, and J. Qiu, “Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode,” Electrochimica Acta, vol. 176, pp. 426–433, Sep. 2015, doi: 10.1016/j.electacta.2015.07.037.
[61] C. Qin, H. Wang, X. Yuan, T. Xiong, J. Zhang, and J. Zhang, “Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices,” Chemical Engineering Journal, vol. 382, p. 122977, Feb. 2020, doi: 10.1016/j.cej.2019.122977.
[62] N. L. Panwar and A. Pawar, “Influence of activation conditions on the physicochemical properties of activated biochar: a review,” Biomass Conversion and Biorefinery, vol. 12, no. 3, pp. 925–947, Mar. 2022, doi: 10.1007/s13399-020-00870-3.
[63] D. V. Cuong, P.-C. Wu, N.-L. Liu, and C.-H. Hou, “Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions,” Separation and Purification Technology, vol. 242, p. 116813, Jul. 2020, doi: 10.1016/j.seppur.2020.116813.
[64] X. F. Zhang et al., “Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization,” RSC Advances, vol. 8, no. 3, pp. 1159–1167, 2018, doi: 10.1039/C7RA10689K.
[65] Y.-C. Tsai and R. Doong, “Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization application,” Synthetic Metals, vol. 205, pp. 48–57, Jul. 2015, doi: 10.1016/j.synthmet.2015.03.026.
[66] K. Maheshwari, M. Agarwal, and A. B. Gupta, “Efficient desalination system for brackish water incorporating biomass-derived porous material,” J Taiwan Inst Chem Eng, vol. 134, p. 104316, May 2022, doi: 10.1016/j.jtice.2022.104316.
[67] J. Adorna, M. Borines, V. D. Dang, and R.-A. Doong, “Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization,” Desalination, vol. 492, p. 114602, Oct. 2020, doi: 10.1016/j.desal.2020.114602.
[68] Q. Dong et al., “Engineering porous biochar for capacitive fluorine removal,” Separation and Purification Technology, vol. 257, p. 117932, Feb. 2021, doi: 10.1016/j.seppur.2020.117932.
[69] H. M. Moustafa, M. M. Nassar, M. A. Abdelkareem, M. S. Mahmoud, and M. Obaid, “Synthesis of single and bimetallic oxide-doped rGO as a possible electrode for capacitive deionization,” Journal of Applied Electrochemistry, vol. 50, no. 7, pp. 745–755, Jul. 2020, doi: 10.1007/s10800-020-01435-y.
[70] D. S. Sun, Y. H. Li, Z. Y. Wang, X. P. Cheng, S. Jaffer, and Y. F. Zhang, “Understanding the mechanism of hydrogenated NiCo 2 O 4 nanograss supported on Ni foam for enhanced-performance supercapacitors,” Journal of Materials Chemistry A, vol. 4, no. 14, pp. 5198–5204, 2016, doi: 10.1039/C6TA00928J.
[71] S. J. Arbaz, S. C. Sekhar, G. Nagaraju, B. Ramulu, and J. S. Yu, “Rational Design of Bimetallic Oxide Multi‐Nanoarchitectures for High‐Rate and Durable Hybrid Supercapacitors,” Advanced Materials Technologies, vol. 6, no. 1, p. 2000793, Jan. 2021, doi: 10.1002/admt.202000793.
[72] R. B. Waghmode and A. P. Torane, “Hierarchical 3D NiCo2O4 nanoflowers as electrode materials for high performance supercapacitors,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 6, pp. 6133–6139, Jun. 2016, doi: 10.1007/s10854-016-4540-3.
[73] D. P. Dubal, P. Gomez-Romero, B. R. Sankapal, and R. Holze, “Nickel cobaltite as an emerging material for supercapacitors: An overview,” Nano Energy, vol. 11, pp. 377–399, Jan. 2015, doi: 10.1016/j.nanoen.2014.11.013.
[74] T. K. A. Nguyen, E. P. Kuncoro, and R.-A. Doong, “Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization,” Electrochimica Acta, vol. 401, p. 139488, Jan. 2022, doi: 10.1016/j.electacta.2021.139488.
[75] H. Younes, F. Ravaux, N. el Hadri, and L. Zou, “Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization,” Electrochimica Acta, vol. 306, pp. 1–8, May 2019, doi: 10.1016/j.electacta.2019.03.097.
[76] Y. Xu, S. Xiang, H. Zhou, G. Wang, H. Zhang, and H. Zhao, “Intrinsic Pseudocapacitive Affinity in Manganese Spinel Ferrite Nanospheres for High-Performance Selective Capacitive Removal of Ca 2+ and Mg 2+,” ACS Applied Materials & Interfaces, vol. 13, no. 32, pp. 38886–38896, Aug. 2021, doi: 10.1021/acsami.1c09996.
[77] K. Rambabu et al., “Development of watermelon rind derived activated carbon/manganese ferrite nanocomposite for cleaner desalination by capacitive deionization,” Journal of Cleaner Production, vol. 272, p. 122626, Nov. 2020, doi: 10.1016/j.jclepro.2020.122626.
[78] Inc. Encyclopædia Britannica, “Corn plant,” 2022. https://www.britannica.com/plant/wild-rice (accessed Jun. 25, 2022).
[79] Y. Hamzah and W. Fanglian, “Physicochemical properties and acceptance of high fibre bread incorporated with corn cob flour,” Asian Journal of Food and Agro-Industry , vol. 5, pp. 547–553, Jan. 2012.
[80] A. M. Ocampo, P. J. A. Santos, C. R. Lapoot, and S. C. Tumamang, “Utilization of corn cobs as source for potassium fertilization and nutrition for white corn production,” Philippine Journal of Crop Science (Philippines), vol. v. 38.
[81] S. Rahmawati, Pathuddin, J. Sakung, Suherman, A. Fudholi, and L. Sushmita, “The utilization of corncob for the manufacture of charcoal briquette as an alternative fuel,” Journal of Physics: Conference Series, vol. 1563, no. 1, p. 012022, Jun. 2020, doi: 10.1088/1742-6596/1563/1/012022.
[82] A. Nuhu, N. Shehu, and A. J. Usman, “Utilization of Corn Cobs Ash as Cementitious and Binary Cementitious Materials in Concrete and Cement-based Composites: A Review,” DRC Sustainable Future: Journal of Environment, Agriculture, and Energy, pp. 26–42, May 2021, doi: 10.37281/DRCSF/2.1.4.
[83] S. Polat, “A Research on the Usage of Corn Cob in Producing Lightweight Concrete,” Natural Resources, vol. 12, no. 10, pp. 339–347, 2021, doi: 10.4236/nr.2021.1210023.
[84] E. Roebiakto, N. H. Damayanti, N. Oktiyani, and N. Nurlailah, “Utilization of Activated Corn Cob (Zea Mays) as an Improved Adsorbent for Reducing Chemical Oxygen Demand (COD) Value from Waste of the Sasirangan Industry,” Medical Laboratory Technology Journal, vol. 7, no. 1, p. 36, Jun. 2021, doi: 10.31964/mltj.v7i1.351.
[85] L. P. Patil, R. S. Patil, K. S. Deore, G. A. Vairalkar, R. E. Patil, and S. L. Patil, “Treatment of sewage waste water using an agricultural waste corn cobs,” International Journal of Advance Research, Ideas and Innovations in Technology, vol. 5, no. 3, pp. 51–56, 2019.
[86] C. A. Igwegbe, C. J. Umembamalu, E. U. Osuagwu, S. N. Oba, and L. N. Emembolu, “Studies on Adsorption Characteristics of Corn Cobs Activated Carbon for the Removal of Oil and Grease from Oil Refinery Desalter Effluent in a Downflow Fixed Bed Adsorption Equipment,” European Journal of Sustainable Development Research, vol. 5, no. 1, p. em0145, Nov. 2020, doi: 10.29333/ejosdr/9285.
[87] L. M. Mohlala, M. O. Bodunrin, A. A. Awosusi, M. O. Daramola, N. P. Cele, and P. A. Olubambi, “Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: A short overview,” Alexandria Engineering Journal, vol. 55, no. 3, pp. 3025–3036, Sep. 2016, doi: 10.1016/j.aej.2016.05.014.
[88] J. Hong, J. Zhou, and J. Hong, “Environmental and economic impact of furfuralcohol production using corncob as a raw material,” The International Journal of Life Cycle Assessment, vol. 20, no. 5, pp. 623–631, May 2015, doi: 10.1007/s11367-015-0854-2.
[89] K. Singh, J. Singh, and S. Kumar, “A Sustainable Environmental Study on Corn Cob Ash Subjected To Elevated Temperature,” Current World Environment, vol. 13, no. 1, pp. 144–150, Apr. 2018, doi: 10.12944/CWE.13.1.13.
[90] M. Takada, R. Niu, E. Minami, and S. Saka, “Characterization of three tissue fractions in corn (Zea mays) cob,” Biomass and Bioenergy, vol. 115, pp. 130–135, Aug. 2018, doi: 10.1016/j.biombioe.2018.04.023.
[91] J. Y. Choi, J. Nam, B. Y. Yun, Y. U. Kim, and S. Kim, “Utilization of corn cob, an essential agricultural residue difficult to disposal: Composite board manufactured improved thermal performance using microencapsulated PCM,” Industrial Crops and Products, vol. 183, p. 114931, Sep. 2022, doi: 10.1016/j.indcrop.2022.114931.
[92] T. Chen et al., “Highly Anisotropic Corncob as an Efficient Solar Steam-Generation Device with Heat Localization and Rapid Water Transportation,” ACS Applied Materials & Interfaces, vol. 12, no. 45, pp. 50397–50405, Nov. 2020, doi: 10.1021/acsami.0c13845.
[93] L. Jiang, L. Sheng, and Z. Fan, “Biomass-derived carbon materials with structural diversities and their applications in energy storage,” Science China Materials, vol. 61, no. 2, pp. 133–158, Feb. 2018, doi: 10.1007/s40843-017-9169-4.
[94] X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, and R. Que, “Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors,” Chemical Engineering Journal, vol. 344, pp. 311–319, Jul. 2018, doi: 10.1016/j.cej.2018.03.061.
[95] C. Jin et al., “Biomass-based materials for green lithium secondary batteries,” Energy & Environmental Science, vol. 14, no. 3, pp. 1326–1379, 2021, doi: 10.1039/D0EE02848G.
[96] Y. Fu, Y. Shen, Z. Zhang, X. Ge, and M. Chen, “Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption,” Science of The Total Environment, vol. 646, pp. 1567–1577, Jan. 2019, doi: 10.1016/j.scitotenv.2018.07.423.
[97] L. Han, K. G. Karthikeyan, M. A. Anderson, and K. B. Gregory, “Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization,” Journal of Colloid and Interface Science, vol. 430, pp. 93–99, Sep. 2014, doi: 10.1016/j.jcis.2014.05.015.
[98] W. Chen et al., “Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH,” Applied Energy, vol. 278, p. 115730, Nov. 2020, doi: 10.1016/j.apenergy.2020.115730.
[99] Jena Library of Biological Macromolecules (JenaLib), “Determination of secondary structure in proteins by Fourier Transform Infrared Spectroscopy (FTIR),” 2015. http://jenalib.leibniz-fli.de/ImgLibDoc/ftir/IMAGE_FTIR.html (accessed Jun. 29, 2022).
[100] B. Smith, “Organic Nitrogen Compounds, VII: Amides - the Rest of the Story,” Jan. 01, 2020.
[101] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, “Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices,” The Journal of Physical Chemistry C, vol. 122, no. 1, pp. 194–206, Jan. 2018, doi: 10.1021/acs.jpcc.7b10582.
[102] L. Zhao, X. Cao, W. Zheng, Q. Wang, and F. Yang, “Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar,” Chemosphere, vol. 136, pp. 133–139, Oct. 2015, doi: 10.1016/j.chemosphere.2015.04.053.
[103] J. Zhang, F. Liu, J. P. Cheng, and X. B. Zhang, “Binary Nickel–Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature,” ACS Applied Materials & Interfaces, vol. 7, no. 32, pp. 17630–17640, Aug. 2015, doi: 10.1021/acsami.5b04463.
[104] S. A. Vladimirova et al., “Nanocrystalline complex oxides NixCo3-xO4: Cations distribution impact on electrical and gas sensor behaviour,” Journal of Alloys and Compounds, vol. 828, p. 154420, Jul. 2020, doi: 10.1016/j.jallcom.2020.154420.
[105] Hasan Al Rashid, “Electronic structures of spinel nickel cobaltite from a spin-polarized quasi-particle self-consistent GW method,” Ph.D. Thesis, Graduate School of Natural Science & Technology, Kanazawa, 2020.
[106] T.-C. Chang et al., “The Effect of Degrees of Inversion on the Electronic Structure of Spinel NiCo 2 O 4 : A Density Functional Theory Study,” ACS Omega, vol. 6, no. 14, pp. 9692–9699, Apr. 2021, doi: 10.1021/acsomega.1c00295.
[107] L. I. Krishtalik, “Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes,” Electrochimica Acta, vol. 26, no. 3, pp. 329–337, Mar. 1981, doi: 10.1016/0013-4686(81)85019-0.
[108] R. Djara et al., “Self‐Supported Electrocatalysts Derived from Nickel‐Cobalt Modified Polyaniline Polymer for H 2 ‐Evolution and O 2 ‐Evolution Reactions,” ChemCatChem, vol. 12, no. 22, pp. 5789–5796, Nov. 2020, doi: 10.1002/cctc.202001235.
[109] C. Tomon et al., “Insight into photoelectrocatalytic mechanisms of bifunctional cobaltite hollow-nanofibers towards oxygen evolution and oxygen reduction reactions for high-energy zinc-air batteries,” Electrochimica Acta, vol. 392, p. 139022, Oct. 2021, doi: 10.1016/j.electacta.2021.139022.
[110] D. P. Dubal, P. Gomez-Romero, B. R. Sankapal, and R. Holze, “Nickel cobaltite as an emerging material for supercapacitors: An overview,” Nano Energy, vol. 11, pp. 377–399, Jan. 2015, doi: 10.1016/j.nanoen.2014.11.013.
[111] J. Wang, J. Polleux, J. Lim, and B. Dunn, “Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO 2 (Anatase) Nanoparticles,” The Journal of Physical Chemistry C, vol. 111, no. 40, pp. 14925–14931, Oct. 2007, doi: 10.1021/jp074464w.
[112] H. A. Kuo et al., “Understanding resistances in capacitive deionization devices,” Environmental Science: Water Research & Technology, vol. 6, no. 7, pp. 1842–1854, 2020, doi: 10.1039/D0EW00169D.
[113] S. M. Mahadik, N. R. Chodankar, Y. Han, D. P. Dubal, and S. Patil, “Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors,” ChemSusChem, vol. 14, no. 24, pp. 5384–5398, Dec. 2021, doi: 10.1002/cssc.202101465.
[114] D. Yang et al., “Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors,” Journal of Power Sources, vol. 362, pp. 358–365, Sep. 2017, doi: 10.1016/j.jpowsour.2017.07.053.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *