|
[1] Pearson, K., The Problem of the Random Walk. Nature, 1905. 72(1865): p. 294-294. [2] Einstein, A., A new determination of molecular dimensions. Ann. Phys., 1906. 19: p. 289-306. [3] Codling, E.A., M.J. Plank, and S. Benhamou, Random walk models in biology. Journal of the Royal society interface, 2008. 5(25): p. 813-834. [4] Shultis, J.K. and R.E. Faw, An MCNP primer. 2011. [5] Islam, A.F., Modeling Neutron Interaction Inside a 2D Reactor Using Monte Carlo Method. 2019, University of South Carolina. [6] Borwein, J.M., A. Straub, and J. Wan, Three-step and four-step random walk integrals. Experimental Mathematics, 2013. 22(1): p. 1-14. [7] Borwein, J. M., Straub, A., Wan, J., Zudilin, W., & Zagier, D., Densities of short uniform random walks. Canadian Journal of Mathematics, 2012. 64(5), p. 961-990. [8] Duderstadt, J.J. and L.J. Hamilton, Nuclear reactor analysis. Wiley, 1976. [9] Montroll, E.W., On the wonderful world of random walks. [10] Cáceres, M.O. and H. Wio, Random walk approach for neutron diffusion with strong absorption. Nuclear Instruments and Methods in Physics Research, 1984. 219(2): p. 441-442. [11] Karmeshu and L. Kothari, Neutron diffusion as a random walk problem. American Journal of Physics, 1972. 40(9): p. 1264-1269. [12] Matsumoto, M. and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 1998. 8(1), p. 3-30. [13] Was, G. S., Fundamentals of radiation materials science: metals and alloys. springer, 2016. [14] Kittel, C., & Kroemer, H., Thermal physics, 1998.
|