帳號:guest(52.15.180.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林立雅
作者(外文):Lin, Li-Ya.
論文名稱(中文):組織等效比例計數器應用於重粒子治療輻射場之微劑量特性研究
論文名稱(外文):Study on the Microdosimetric Characteristics of the Tissue Equivalent Proportional Counter Used in Heavy-Particle Therapy Radiation Field
指導教授(中文):許靖涵
許芳裕
指導教授(外文):Hsu, Ching-Han
Hsu, Fang-Yuh
口試委員(中文):游澄清
陳拓榮
口試委員(外文):Yu, Cheng-Ching
Chen, Tou-Rong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:109013507
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:80
中文關鍵詞:微劑量學組織等效比例計數器重粒子治療生物加權函數相對生物效應
外文關鍵詞:MicrodosimetryTEPCHeavy-Particle therapyBiological weighting functionRBE
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
相較於重粒子治療技術發展較成熟的日本、德國,於2021年,國內臺北榮民總醫院建立了首座以碳離子射束治療病患的重粒子治療設施,臺灣重粒子治療之碳離子射束實際量測經驗需要從基礎開始奠定,能評估游離輻射品質更為其首要目的。
評估重粒子輻射殺死癌細胞的傷害效應,需以微劑量學(Microdosimetry)觀點加以研究,故本研究使用實驗室自製之半英吋組織等效比例計數器,進行偵檢器穩定度分析、評估重粒子治療輻射場之射束品質,並利用生物加權函數計算相對生物效應,以提供未來碳離子治療設施進行臨床試驗之輻射劑量評估參考。
使用氣體充填系統、量測系統,比對計數器於不同氣壓下之能量校正測試結果之穩定度,找出TEPC在重粒子治療設施測試運轉期間之最佳量測條件與可行性評估。以TEPC獲得在不同能量下碳離子射束線能劑量貢獻之微劑量能譜,再合併生物加權函數後評估重粒子治療設施臨床治療條件之有效RBE與射束品質,探究輻射場之微劑量學特性。期許透過本研究能夠於未來進一步拓展碳離子治療之相關應用。
Compared with Japan and Germany, where the development of heavy ion therapy technology is relatively ripe, in 2021, Taipei Veterans General Hospital established the first heavy ion therapy facility to treat patients with carbon ion beams in Taiwan. The experience of practical measurement in carbon-ion therapy radiation field needs to be established from the base, and the ability to evaluate the quality of ionizing radiation is the primary purpose.
To evaluate the effect of heavy-particle radiation on cancer cells, it needs to be studied from the perspective of Microdosimetry. Therefore, this study uses the self-made 0.5-inch Tissue Equivalent Proportional Counter to analyze and evaluate the stability of the detector. The beam quality of the heavy-particle therapy radiation field, and the relative biological effectiveness calculated using the biological weighting function, to provide a reference for radiation dose assessment for future clinical trials of carbon-ion radiotherapy facilities.
Using the gas filling system and measurement system, compare the stability of the energy calibration test results of the counter under different gas pressures, and find out the optimal measurement conditions and feasibility assessment of TEPC during the practical operation of the heavy ion therapy facility. The microdosimetric spectrum of dose lineal energy contribution at different energies was combined with the biological weighting function to evaluate the effective RBE and beam quality. To explore the microdosimetric characteristics of the radiation field. It is hoped that the related applications of carbon ion radiotherapy can be further expanded through this study.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 3
第二章 理論基礎 4
2.1 微劑量學 4
2.2 微劑量學參數 4
2.3 參數分布圖形化 8
2.4 相對生物效應 9
2.4.1 生物加權函數 9
2.4.2 改善的生物加權函數 11
2.5 臨床相對生物效應 14
第三章 實驗設備與方法 19
3.1 氣體充填系統 19
3.2 度量系統 21
3.3 組織等效比例計數器 22
3.3.1 組織等效塑膠 22
3.3.2 陽極 23
3.3.3 內建之校正射源 23
3.3.4 組織等效氣體 26
3.4 二維伺服馬達座標控制系統 26
3.5 實驗方法 28
3.5.1 模擬微小體積與組織等效氣體之氣壓 28
3.5.2 線性能量轉換法 29
3.5.3 微劑量學能譜表示法 36
3.5.4 吸收劑量轉換法 37
第四章 結果與討論 40
4.1 TEPC穩定度分析之量測儀器參數設置 40
4.2 TEPC穩定度分析 42
4.3 TEPC模擬1微米細胞之線性能量與計數特性 43
4.4 TEPC模擬1微米細胞之鋂241微劑量學能譜與RBE 46
4.5 重粒子治療設施測試運轉之輻射場量測結果 48
4.5.1 碳離子射束之原始能譜 49
4.5.2 碳離子射束之微劑量學能譜分析 50
4.5.3 比較三種能量之微劑量學參數 52
4.6 水假體中不同深度之重粒子輻射場量測結果 54
4.6.1 射束能量153.1 MeV微劑量學能譜分析 56
4.6.2 射束能量188.8 MeV微劑量學能譜分析 60
4.6.3 射束能量228.0 MeV微劑量學能譜分析 62
4.6.4 百分深度劑量與有效相對生物效應 64
第五章 結論 69
參考文獻 70
附錄一 74
附錄二 75
附錄三 76
附錄四 77
附錄五 78
附錄六 79
附錄七 80
1. Brown, Andrew, and Herman Suit. “The centenary of the discovery of the Bragg peak.” Radiotherapy and Oncology, 73(3), 265-268, 2004.
2. Wilson, Robert R. “Radiological use of fast protons.” Radiology, 47(5), 487-491, 1946.
3. Kanai, Tatsuaki, et al. “Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.” International Journal of Radiation Oncology* Biology* Physics, 44(1), 201-210, 1999.
4. Combs, Stephanie E., et al. “Particle therapy at the Heidelberg Ion Therapy Center (HIT)–integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany.” Radiotherapy and Oncology, 95(1), 41-44, 2010.
5. 臺北榮民總醫院腫瘤醫學部:
https://wd.vghtpe.gov.tw/Cancer_Cen/Fpage.action?muid=7&fid=13582
6. Mohamad, Osama, et al. “Carbon ion radiotherapy: a review of clinical experiences and preclinical research, with an emphasis on DNA damage/repair.” Cancers, 9(6), 66, 2017.
7. Newhauser, Wayne. “International commission on radiation units and measurements report 78: Prescribing, recording and reporting proton-beam therapy.” 60-62, 2009.
8. Ying, C. K., et al. “Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation.” Journal of Physics: Conference Series. Vol. 851. No. 1. IOP Publishing, 2017.
9. Pihet, P., et al. “Biological weighting function for RBE specification of neutron therapy beams. Intercomparison of 9 European centres.” Radiation Protection Dosimetry, 31(1-4), 437-442, 1990.
10. Bolst, David, et al. “Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.” Physics in Medicine & Biology, 62(6), 2055, 2017.
11. Rossi, Harald H., and Walter Rosenzweig. “A device for the measurement of dose as a function of specific ionization.” Radiology, 64(3), 404-411, 1955.
12. Kliauga, P. “Measurement of single event energy deposition spectra at 5 nm to 250 nm simulated site sizes.” Radiation Protection Dosimetry, 31(1-4), 119-123, 1990.
13. De Nardo, L., et al. “Mini-TEPCs for radiation therapy.” Radiation protection dosimetry, 108(4), 345-352, 2004.
14. International Commission on Radiation Units and Measurements, Radiation quantities and units. Report 33, Washington, D.C., U.S.A., 1980.
15. International Commission on Radiation Units and Measurements, Microdosimetry, Report 36, Bethesda, Maryland, U.S.A., 1983.
16. Zaider, M., By Harald H. Rossi, and Marco Zaider. Microdosimetry and its Applications, John Libbey, 1996.
17. International Commission on Radiation Units and Measurements, Fundamental quantities and units for ionizing radiation, Report 85 Thomas, David J., 550-552., 2011.
18. Kase, Yuki, et al. “Microdosimetric measurements and estimation of human cell survival for heavy-ion beams.” Radiation research, 166(4), 629-638, 2006.
19. Weyrather, W. K., and G. Kraft. “RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. ” Radiotherapy and Oncology, 73, S161-S169, 2004.
20. Loncol, T., et al. “Radiobiological effectiveness of radiation beams with broad LET spectra: microdosimetric analysis using biological weighting functions.” Radiation Protection Dosimetry, 52(1-4), 347-352, 1994.
21. Coutrakon, G., et al. “Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons.” Medical physics, 24(9), 1499-1506, 1997.
22. Parisi, Alessio, et al. “Development of a new microdosimetric biological weighting function for the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to 238U.” Physics in Medicine & Biology, 65(23), 235010, 2020.
23. Gueulette, John, et al. “Intestinal crypt regeneration in mice: a biological system for quality assurance in non-conventional radiation therapy.” Radiotherapy and Oncology, 73, S148-S154, 2004.
24. Belli, Mauro, et al. “Effectiveness of monoenergetic and spread-out bragg peak carbon-ions for inactivation of various normal and tumour human cell lines.” Journal of radiation research, 49(6), 597-607, 2008.
25. Uzawa, Akiko, et al. “Comparison of biological effectiveness of carbon-ion beams in Japan and Germany.” International Journal of Radiation Oncology* Biology* Physics, 73(5), 1545-1551, 2009.
26. Waker, A. J. “Principals of experimental microdosimetry.” Radiation protection dosimetry, 61(4), 297-308, 1995.
27. International Commission on Radiation Units and Measurements, Determination of dose equivalents resulting from external radiation sources. Report 39, Bethesde, Maryland, U.S.A., 1985.
28. Braby, L. A., G. W. Johnson, and J. Barthe. “Practical considerations in the design and construction of tissue-equivalent proportional counters.” Radiation protection dosimetry, 61(4), 351-379, 1995.
29. C. Grupen, Introduction to Radiation Protection, Springer-Verlag Berlin Heidelberg, 2010.
30. Srdoč, Dušan. “Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi counters.” Radiation research, 43(2), 302-319, 1970.
31. Fano, U. “Note on the Bragg-Gray cavity principle for measuring energy dissipation.” Radiation Research, 1(3), 237-240, 1954.
32. Gerdung, S., et al. “Operation and application of tissue equivalent proportional counters.” Radiation protection dosimetry, 61(4), 381-404, 1995.
33. Nunomiya, T., et al. “Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter.” Radiation protection dosimetry, 102(1), 49-59, 2002.
34. Range tables for using isotope:
https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
35. Choi, Jinhyun, and Jin Oh Kang. “Basics of particle therapy II: relative biological effectiveness.” Radiation oncology journal, 30(1), 1, 2012.
36. Karger, Christian P., and Peter Peschke. “RBE and related modeling in carbon-ion therapy.” Physics in Medicine & Biology, 63(1), 01TR02, 2017.
37. Kase, Yuki, et al. “Microdosimetric approach to NIRS-defined biological dose measurement for carbon-ion treatment beam.” Journal of radiation research, 52(1), 59-68, 2011.
38. Hartzell, Shannon, et al. “Uncertainty in tissue equivalent proportional counter assessments of microdosimetry and RBE estimates in carbon radiotherapy.” Physics in Medicine & Biology, 66(15), 155018, 2021.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *