帳號:guest(3.12.34.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐宇瑩
作者(外文):Hsu, Yu-Ying
論文名稱(中文):鎦-177胜肽受體放射性核種治療的體內劑量與體外曝露之評估
論文名稱(外文):Evaluation of the internal dosimetry and external exposure in 177Lu-DOTATATE peptide receptor radionuclide therapy
指導教授(中文):許榮鈞
指導教授(外文):Sheu, Rong-Jiun
口試委員(中文):張似瑮
林明緯
口試委員(外文):Chang, Szu-Li
Lin, Ming-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:109013505
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:140
中文關鍵詞:177鎦-標誌體抑素類似物擬人假體體內劑量評估體外曝露防護
外文關鍵詞:177Lu-DOTATATEAnthropomorphic phantomInternal dosimetry assessmentExternal exposure protection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:282
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胜肽受體放射性核種治療藥物:177Lutetium-DOTATATE(Lutathera®)於2021年底引進台灣台大癌醫中心醫院,針對胃腸胰神經內分泌腫瘤的患者進行治療,未來陸續有其他間醫院有望進行此項治療。而患者在接受核醫藥物的治療或診斷時,由於177Lu本身核種的物理特性與目前核醫治療大宗的131I類似,藥物皆會在體內、外產生輻射劑量,相關的防護問題一直是核醫學範疇內相當重要的議題。本研究分別針對177Lu-DOTATATE核醫藥物產生之體內劑量與體外輻射曝露進行計算評估,建立一套完整且具系統性之分析方法,並將結果與131I治療作比較分析。
針對體內劑量評估問題,本研究以現行核醫界常用之 MIRD方法為基礎,利用蒙地卡羅程式與擬人數值假體分別進行比吸收分率與 S 值之計算,以驗證程式與假體使用方法的可靠度。另選用 OLINDA/EXM 與 MIRDcalc 兩個程式針對兩種有興趣之放射性核種:177Lu及131I標記藥物評估患者接受單次診療時可能獲得之全身有效劑量,結果若是依據真實的藥物分佈,則單次注射7400 MBq之177Lu標記藥物造成患者之全身有效劑量約為0.02-1.09 Sv;而單次注射1110-7400 MBq之131I標記藥物造成患者扣除甲狀腺之全身有效劑量約為0.03-2.26 Sv。
於體外輻射曝露之防護上,本研究透過台大癌醫中心177Lu治療的三位患者之量測數據回顧,考慮到藥物於體內除了核種的物理衰變,尚有藥物動力學造成的生物衰變,利用四種不同的擬合方法計算出177Lu在人體內之有效半衰期,其結果比131I低2-4倍左右;於注射藥物後各個時間點之1公尺處測量之劑量率也比131I低了數倍。另外,本研究更參考一般常用之幾何較為簡單的點、線射源模型以及模擬兩種藥物分佈,發現射源模型計算值與測量值間之落差可能主要來自於環境散射劑量的貢獻。三位鎦-177患者若套用碘-131治療之法規外釋標準,均可採取門診治療,然而尚需以病患的健康安全為最大考量。在實務應用上,病患其體外曝露對於陪病家屬造成的劑量評估至關重要。
PRRT drugs: 177Lutetium-DOTATATE (Lutathera®) was introduced to Taiwan at 2021 for the treatment of patients with GEP-neuroendocrine tumors. When patients receive radiopharmaceuticals for treatment or diagnosis, due to 177Lu’s physical properties, radiation will generate doses inside and outside the body. This study calculated and evaluated the internal dose and external radiation exposure of 177Lu-DOTATATE, established a complete and systematic analysis method, and compared the results with 131I treatment.
Aiming at the problem of internal dose assessment, this study is based on the MIRD method, which is commonly used in the nuclear medicine community. Uses the Monte Carlo program and the anthropomorphic phantom to calculate the specific absorption fraction and S value, to verify the program and the use of the reliability of the method. In addition, two programs , OLINDA/EXM and MIRDcalc, are used to evaluate the effective dose that obtained by patients. Based on a single injection of 177Lu-labeled drug and 131I-labeled drug, patients receive effective dose of about 0.024-1.09 Sv, and 0.03-0.22 Sv.
Regarding the protection of radiation exposure, this study reviewed the measurement data of three patients treated with 177Lu in the NTUCC. The effective half-life of 177Lu in the human body was calculated by different fitting methods, and the result was about 2-4 times lower than that of 131I. The dose rate measured at 1 meter at each time point was also several times lower than that of 131I . In addition, this study used point and line source models compared with simulation. It is found that the difference between the calculated and the measured value may mainly come from environmental scattering dose. In practical applications, it is important to evaluate cumulative dose of family members.
摘要----i
Abstract----ii
誌謝----iii
目錄----iv
表目錄----vi
圖目錄----x
第一章 緒論----1
1.1 前言----1
1.2 文獻回顧----2
1.3 研究目的與動機----4
1.4 鎦-177物理特性及鎦-177-DOTATATE藥物特性----6
第二章 核子醫學概論及劑量理論----9
2.1 核子醫學----9
2.2 輻射劑量單位----11
2.3 體內劑量----13
2.4 體外曝露----17
第三章 研究材料與方法----22
3.1 擬人假體及MCNP程式介紹----22
3.1.1 擬人假體介紹----22
3.1.2 MCNP程式介紹----24
3.2 核醫藥物分佈----26
3.3 體內劑量計算----31
3.3.1 比吸收分率與S值之計算----31
3.3.2 體內劑量評估程式----37
3.4 體外曝露計算及測量----41
3.4.1 點、線射源計算模型----42
3.4.2 MCNP 6.2與擬人假體模擬----45
3.4.3 台大癌醫中心分院鎦-177-DOTATATE之劑量率測量----46
第四章 結果與討論----51
4.1 體內劑量計算結果----51
4.1.1 比吸收分率與S值之計算結果----51
4.1.2 器官等價劑量及全身有效劑量評估----75
4.2 體外曝露計算及測量結果----104
4.2.1 點、線射源計算模型結果比較----104
4.2.2 MCNP 6.2與擬人假體模擬結果比較----108
4.2.3鎦-177-DOTATATE治療之劑量率測量數據分析----110
4.3 實務應用----125
4.3.1 病患之劑量----125
4.3.2 陪伴家屬之劑量----127
第五章 結論與未來工作----129
5.1 體內劑量評估----129
5.2 體外曝露評估----130
5.3 未來工作----131
致謝----132
參考文獻----133
[1] J. S. Chang, L. T. Chen, Y. S. Shan, P. Y. Chu, C. R. Tsai, and H. J. Tsai, “An updated analysis of the epidemiologic trends of neuroendocrine tumors in Taiwan,” Sci. Rep., vol. 11, no. 1, pp. 1–10, 2021.
[2] International Commission on Radiological Protection, "Recommendations of the International Commission on Radiological Protection," ICRP Publication 26,1977.
[3] International Commission on Radiological Protection, "1990 Recommendations of the International Commission on Radiological Protection," ICRP Publication 60,1990.
[4] International Commission on Radiological Protection, "The 2007 Recommendations of the International Commission on Radiological Protection," ICRP Publication 103,2007.
[5] Society of Nuclear Medicine and Molecular Imaging(SNMMI), “Important Moments in the History of Nuclear Medicine.” Available: http://www.snmmi.org/AboutSNMMI/Content.aspx?ItemNumber=4175.
[6] C. Parker, S. Nilsson, D. Heinrich, S. I. Helle, J. M. O’Sullivan, S. D. Fosså, A. Chodacki, P. Wiechno, J. Logue, M. Seke, A. Widmark, D. C. Johannessen, P. Hoskin, D. Bottomley, N. D. James, A. Solberg, I. Syndikus, J. Kliment, S. Wedel, et al., “Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer,” N. Engl. J. Med., vol. 369, no. 3, pp. 213–223, 2013.
[7] J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, P. L. Kunz, M. H. Kulke, H. Jacene, D. Bushnell, T. M. O’Dorisio, R. P. Baum, H. R. Kulkarni, M. Caplin, R. Lebtahi, T. Hobday, E. Delpassand, E. VanCutsem, et al., “ Phase 3 Trial of 177 Lu-Dotatate for Midgut Neuroendocrine Tumors ,” N. Engl. J. Med., vol. 376, no. 2, pp. 125–135, 2017.
[8] O. Sartor, J. deBono, K. N. Chi, K. Fizazi, K. Herrmann, K. Rahbar, S. T. Tagawa, L. T. Nordquist, N. Vaishampayan, G. El-Haddad, C. H. Park, T. M. Beer, A. Armour, W. J. Pérez-Contreras, M. DeSilvio, E. Kpamegan, G. Gericke, R. A. Messmann, M. J. Morris, et al., “Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer,” N. Engl. J. Med., vol. 385, no. 12, pp. 1091–1103, 2021.
[9] S. S. Kelkar and T. M. Reineke, “Theranostics: Combining imaging and therapy,” Bioconjug. Chem., vol. 22, no. 10, pp. 1879–1903, 2011.
[10] M. G. Stabin, M. Tagesson, S. R. Thomas, M. Ljungberg, and S. E. Strand, “Radiation dosimetry in nuclear medicine,” Applied Radiation and Isotopes, vol. 50, 1999.
[11] A. B. DeCarvalho, M. G. Stabin, J. A. Siegel, and J. Hunt, “Comparison of point, line and volume dose calculations for exposure to nuclear medicine therapy patients,” Health Phys., vol. 100, no. 2, pp. 185–190, 2011.
[12] U.S. Nuclear Regulatory Commission. Release of patients administered radioactive materials. Washington, DC: U.S. Government Printing Office; Regulatory Guide 8.39; 1997.
[13] U.S. Nuclear Regulatory Commission. Release of patients administered radioactive materials. Washington, DC: U.S. Government Printing Office; Regulatory Guide 8.39; 2020.
[14] Authorization details for Lutathera® in Europe. Available:
https://www.ema.europa.eu/en/medicines/human/EPAR/lutathera#authorisation-details-section.
[15] FDA Letter of Approval for LUTATHERA®. Available:
https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2018/208700Orig1s000ltr.pdf.
[16] Authorization details for Lutathera® in Canada. Available: https://hpr-rps.hres.ca/reg-content/regulatory-decision-summary-detail.php?linkID=RDS00480.
[17] A. Dash, M. R. A. Pillai, and F. F. Knapp, “Production of 177Lu for Targeted Radionuclide Therapy: Available Options,” Nucl. Med. Mol. Imaging (2010)., vol. 49, no. 2, pp. 85–107, 2015.
[18] Hennrich, Ute, and Klaus Kopka. “Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy.” Pharmaceuticals (Basel, Switzerland) vol. 12,3 114. 29 Jul. 2019
[19] Stabin, G. Michael, “Fundamentals of nuclear medicine dosimetry.” New York : Springer, 2008.
[20] INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Medicine Physics, Non-serial Publications , IAEA, Vienna (2015).
[21] J. A. Siegel, C. S. Marcus, and R. B. Sparks, “Calculating the absorbed dose from radioactive patients: The line-source versus point-source model,” J. Nucl. Med., vol. 43, no. 9, pp. 1241–1244, 2002.
[22] Y. Yi, M. G. Stabin, M. H. McKaskle, M. D. Shone, and A. B. Johnson, “Comparison of measured and calculated dose rates near nuclear medicine patients,” Health Phys., vol. 105, no. 2, pp. 187–191, 2013.
[23] J. Willegaignon, M. I. C. Guimarães, M. G. Stabin, M. T. Sapienza, L. F. Malvestiti, M. M. S. Marone, and G. M. A. A. Sordi, “Correction factors for more accurate estimates of exposure rates near radioactive patients: Experimental, point, and line source models,” Health Phys., vol. 93, no. 6, pp. 678–688, 2007.
[24] X. G. Xu, “An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history,” Phys. Med. Biol., vol. 59, no. 18, 2014.
[25] M. Cristy, K. F. Eckerman. Specific absorbed fractions of energy at various ages from internal photon sources. Oak Ridge, TN: Oak Ridge National Laboratory; Report ORNL/TM-8381/V1; 1987.
[26] C. J. Werner (editor), "MCNP Users Manual - Code Version 6.2", LA-UR-17-29981 (2017).
[27] ICRP Publication 53. Radiation Dose to Patients from Radiopharmaceuticals. Ann. ICRP 18 (1-4) , 1988.
[28] ICRP Publication 106. Radiation Dose to Patients from Radiopharmaceuticals - Addendum 3 to ICRP Publication 53. Ann. ICRP 38 (1-2) , 2008.
[29] ICRP Publication 128. Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances. Ann. ICRP 44(2S) , 2015.
[30] ICRP Publication 140. Radiological protection in therapy with radiopharmaceuticals. Ann. ICRP 48(1) , 2019.
[31] M. Hosono, H. Ikebuchi, Y. Nakamura, N. Nakamura, T. Yamada, S. Yanagida, A. Kitaoka, K. Kojima, H. Sugano, S. Kinuya, T. Inoue, and J. Hatazawa, “Manual on the proper use of lutetium-177-labeled somatostatin analogue (Lu-177-DOTA-TATE) injectable in radionuclide therapy (2nd ed.),” Ann. Nucl. Med., vol. 32, no. 3, pp. 217–235, 2018.
[32] ICRP Publication 30 (Part 3). Limits for Intakes of Radionuclides by Workers. Ann. ICRP 6 (2-3) , 1981.
[33] F. Guerriero, M. E. Ferrari, F. Botta, F. Fioroni, E. Grassi, A. Versari, A. Sarnelli, M. Pacilio, E. Amato, L. Strigari, L. Bodei, G. Paganelli, M. Iori, G. Pedroli, M. Cremonesi., “Kidney dosimetry in 177Lu and 90Y peptide receptor radionuclide therapy: Influence of image timing, time-activity integration method, and risk factors,” Biomed Res. Int., vol. 2013, p. 935351, 2013.
[34] D. Kupitz, C. Wetz, H. Wissel, F. Wedel, I. Apostolova, T. Wallbaum, J. Ricke, H. Amthauer, and O. S. Grosser, “Software-assisted dosimetry in peptide receptor radionuclide therapy with 177Lutetium-DOTATATE for various imaging scenarios,” PLoS One, vol. 12, no. 11, pp. 1–14, 2017.
[35] G. Marin, B. Vanderlinden, I. Karfis, T. Guiot, Z. Wimana, N. Reynaert, S. Vandenberghe, and P. Flamen, “A dosimetry procedure for organs-at-risk in 177Lu peptide receptor radionuclide therapy of patients with neuroendocrine tumours,” Phys. Medica, vol. 56, no. October, pp. 41–49, 2018.
[36] E. Mora-Ramirez, L. Santoro, E. Cassol, J. C. Ocampo-Ramos, N. Clayton, G. Kayal, S. Chouaf, D. Trauchessec, J. P. Pouget, P. O. Kotzki, E. Deshayes, and M. Bardiès, “Comparison of commercial dosimetric software platforms in patients treated with 177Lu-DOTATATE for peptide receptor radionuclide therapy,” Med. Phys., vol. 47, no. 9, pp. 4602–4615, 2020.
[37] L. Santoro, L. Pitalot, D. Trauchessec, E. Mora-Ramirez, P. O. Kotzki, M. Bardiès, and E. Deshayes, “Clinical implementation of PLANET® Dose for dosimetric assessment after [177Lu]Lu-DOTA-TATE: comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0,” EJNMMI Res., vol. 11, no. 1, pp. 1–17, 2021.
[38] W. S. Snyder, M. R. Ford, G. G. Warner, “Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom”, MIRD Pamphlet No.5, revised, Society of Nuclear Medicine, New York N. Y, 1978.
[39] M. Cristy, K. F. Eckerman. Specific absorbed fractions of energy at various ages from internal photon sources. Oak Ridge, TN: Oak Ridge National Laboratory; Report ORNL/TM-8381/ V7; 1987.
[40] The Radiation Dose Assessment Resource, RADAR. Available: http://www.doseinfo-radar.com/.
[41] W. Snyder , M. Ford, G. Warner, and S. Watson, "MIRD pamphlet no. 11: S, absorbed dose per unit cumulated activity for selected radionuclides and organs", New York: Society of Nuclear Medicine: 1975.
[42] M. G. Stabin, R. B. Sparks, and E. Crowe, "OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine", J Nucl Med., vol. 46, no. 6, pp. 1023-10277, 2005.
[43] M. Chauvin, D. Borys, F. Botta, P. Bzowski, J. Dabin, A. M. Denis-Bacelar, A. Desbrée, N. Falzone, B. Q. Lee, A. Mairani, A. Malaroda, G. Mathieu, E. McKay, E. Mora-Ramirez, A. P. Robinson, D. Sarrut, L. Struelens, A. V. Gil, and M. Bardiès, “OpenDose: Open-access resource for nuclear medicine dosimetry,” J. Nucl. Med., vol. 61, no. 10, pp. 1514–1519, 2020.
[44] M.G. Stabin. “MIRDOSE: Personal computer software for internal dose assessment in nuclear medicine,” J Nucl Med., vol. 37, pp. 538-546, 1996.
[45] Hermes Medical Solutions. Available: https://www.hermesmedicalsolutions.com/olinda/.
[46] MIRDsoft.org. Available: https://mirdsoft.org/mirdcalc.
[47] MIRDcalc_manual_v1.1.pdf, Available: https://mirdsoft.org/mirdcalc.
[48] D. S. Smith and M. G.Stabin, “Exposure rate constants and lead shielding values for over 1,100 radionuclides,” Health Phys., vol. 102, no. 3, pp. 271–291, 2012.
[49] 台灣人平均身高, Available: https://worldpopulationreview.com/country-rankings/average-height-by-country.
[50] International Commission on Radiological Protection, "Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74", Ann ICRP, 26(3-4): 1996. p. 1-205.
[51] S.R. Thomas, H.R. Maxon, K.M. Fritz, J.G. Kereiakes, W.D. Connell, “A comparison of methods for assessing patient body burden following 131I therapy for thyroid cancer,” Radiology., vol. 137, no. 3, pp. 839–842, 1980.
[52] 林培堯等人。〈放射性同位素治療病房設計規範及實務-以國立臺灣大學醫學院附設癌醫中心醫院為例〉。《台灣應用輻射與同位素雜誌》15.3 (2019): 1775-1779。
[53] Data Sheet for LB 6360-H10 Dose Rate Probe.
Available:https://www.berthold.com/en/radiation-protection/products/dose-and-dose-rate/proportional-counter-lb-6360-lb-1236/.
[54] J. Willegaignon, L. F. Malvestiti, M. I. C. Guimarães, M. T. Sapienza, I. S. Endo, G. C. Neto, M. Marone, and G. M. A. A. Sordi, “131I effective half-life (Teff) for patients with thyroid cancer,” Health Phys., vol. 91, no. 2, pp. 119–122, 2006.
[55] P. J. Calais and J. H. Turner, “Radiation safety of outpatient 177Lu-octreotate radiopeptide therapy of neuroendocrine tumors,” Ann. Nucl. Med., vol. 28, no. 6, pp. 531–539, 2014.
[56] C. Olmstead, K. Cruz, R. Stodilka, P. Zabel, and R. Wolfson, “Quantifying public radiation exposure related to lutetium-177 octreotate therapy for the development of a safe outpatient treatment protocol,” Nucl. Med. Commun., vol. 36, no. 2, pp. 129–134, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *