|
1. Notarstefano, V., et al., Investigation of human pancreatic cancer tissues by Fourier Transform Infrared Hyperspectral Imaging. Journal of Biophotonics, 2020. 13(4): p. e201960071. 2. Pancreatic Cancer Stages. https://immunoviainc.com/about-pancreatic-cancer/pancreatic-cancer-staging/ 3. Anderson, E.M., et al., Advances in pancreatic ductal adenocarcinoma treatment. Cancers, 2021. 13(21): p. 5510. 4. Cid-Arregui, A. and V. Juarez, Perspectives in the treatment of pancreatic adenocarcinoma. World journal of gastroenterology: WJG, 2015. 21(31): p. 9297. 5. Seufferlein, T. and T.J. Ettrich, Treatment of pancreatic cancer—neoadjuvant treatment in resectable pancreatic cancer (PDAC). Translational gastroenterology and hepatology, 2019. 4. 6. Sugimoto, M., et al., Survival benefit of neoadjuvant therapy in patients with non‐metastatic pancreatic ductal adenocarcinoma: a propensity matching and intention‐to‐treat analysis. Journal of surgical oncology, 2019. 120(6): p. 976-984. 7. Hu, X., et al., Tailor‐Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science, 2021. 8(7): p. 2002545. 8. Von Ahrens, D., et al., The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of hematology & oncology, 2017. 10(1): p. 1-8. 9. Wang, Z., et al., Disrupting the balance between tumor epithelia and stroma is a possible therapeutic approach for pancreatic cancer. Medical science monitor: international medical journal of experimental and clinical research, 2014. 20: p. 2002. 10. Wang, D., et al., The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers, 2022. 14(16): p. 3998. 11. Ho, W.J., E.M. Jaffee, and L. Zheng, The tumour microenvironment in pancreatic cancer—clinical challenges and opportunities. Nature reviews Clinical oncology, 2020. 17(9): p. 527-540. 12. Phillips, P., et al., Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut, 2003. 52(2): p. 275-282. 13. Apte, M., et al., Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas, 2004. 29(3): p. 179-187. 14. Masamune, A., et al., Rho kinase inhibitors block activation of pancreatic stellate cells. British journal of pharmacology, 2003. 140(7): p. 1292-1302. 15. Apte, M.V., R.C. Pirola, and J.S. Wilson, Pancreatic stellate cells: a starring role in normal and diseased pancreas. Frontiers in physiology, 2012. 3: p. 344. 16. Truong, L.-H. and S. Pauklin, Pancreatic cancer microenvironment and cellular composition: current understandings and therapeutic approaches. Cancers, 2021. 13(19): p. 5028. 17. Jacobetz, M.A., et al., Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 2013. 62(1): p. 112-120. 18. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009. 324(5933): p. 1457-1461. 19. Schnittert, J., R. Bansal, and J. Prakash, Targeting pancreatic stellate cells in cancer. Trends in cancer, 2019. 5(2): p. 128-142. 20. Paulson, A.S., et al., Therapeutic advances in pancreatic cancer. Gastroenterology, 2013. 144(6): p. 1316-1326. 21. 高祥豐醫師, 臺.腫., 胰臟癌化學治療與標靶治療的現況與進展. http://web.tccf.org.tw/lib/addon.php?act=post&id=4013. 22. Andersson, R., et al., Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scandinavian journal of gastroenterology, 2009. 44(7): p. 782-786. 23. Amrutkar, M. and I.P. Gladhaug, Pancreatic cancer chemoresistance to gemcitabine. Cancers, 2017. 9(11): p. 157. 24. Shirasaka, T., Development history and concept of an oral anticancer agent S-1 (TS-1®): its clinical usefulness and future vistas. Japanese journal of clinical oncology, 2009. 39(1): p. 2-15. 25. Conroy, T., et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New England journal of medicine, 2011. 364(19): p. 1817-1825. 26. Pusceddu, S., et al., Comparative effectiveness of gemcitabine plus nab-paclitaxel and FOLFIRINOX in the first-line setting of metastatic pancreatic cancer: a systematic review and meta-analysis. Cancers, 2019. 11(4): p. 484. 27. Glassman, D.C., et al., Nanoliposomal irinotecan with fluorouracil for the treatment of advanced pancreatic cancer, a single institution experience. BMC cancer, 2018. 18(1): p. 1-10. 28. Yip, D., et al., Chemotherapy and radiotherapy for inoperable advanced pancreatic cancer. Cochrane database of systematic reviews, 2006(3). 29. Du, F., et al., Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. International Journal of Nanomedicine, 2017. 12: p. 5973. 30. Prise, K.M. and J.M. O'sullivan, Radiation-induced bystander signalling in cancer therapy. Nature Reviews Cancer, 2009. 9(5): p. 351-360. 31. Bittner, M.-I., A.-L. Grosu, and T.B. Brunner, Comparison of toxicity after IMRT and 3D-conformal radiotherapy for patients with pancreatic cancer–a systematic review. Radiotherapy and Oncology, 2015. 114(1): p. 117-121. 32. Miura, F., et al., Diagnosis of pancreatic cancer. HPB, 2006. 8(5): p. 337-342. 33. Raptopoulos, V., et al., The use of helical CT and CT angiography to predict vascular involvement from pancreatic cancer: correlation with findings at surgery. AJR. American journal of roentgenology, 1997. 168(4): p. 971-977. 34. Lusic, H. and M.W. Grinstaff, X-ray-computed tomography contrast agents. Chemical reviews, 2013. 113(3): p. 1641-1666. 35. Mattrey, R.F. and D.A. Aguirre, Advances in contrast media research1. Academic radiology, 2003. 10(12): p. 1450-1460. 36. Ross, J.S., et al., Targeted therapies for cancer 2004. American journal of clinical pathology, 2004. 122(4): p. 598-609. 37. Yang, G., et al., Bioinspired core–shell nanoparticles for hydrophobic drug delivery. Angewandte Chemie, 2019. 131(40): p. 14495-14502. 38. Su, C.-W., et al., Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine, 2014. 9(10): p. 1499-1515. 39. Cho, K., et al., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008. 14(5): p. 1310-1316. 40. Shen, Z., M.-P. Nieh, and Y. Li, Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers, 2016. 8(3): p. 83. 41. Acharya, S. and S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 170-183. 42. Byrne, J.D., T. Betancourt, and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews, 2008. 60(15): p. 1615-1626. 43. Letfullin, R.R., et al., Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. 2006. 44. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12_Part_1): p. 6387-6392. 45. Maeda, H., Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release, 2012. 164(2): p. 138-144. 46. Subhan, M.A., et al., Recent advances in tumor targeting via EPR effect for cancer treatment. Journal of personalized medicine, 2021. 11(6): p. 571. 47. Abdalla, A.M., et al., Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018. 8(2): p. 533. 48. Bala, V., et al., Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. Journal of controlled release, 2013. 172(1): p. 48-61. 49. Zhao, H., et al., Novel prodrugs of SN38 using multiarm poly (ethylene glycol) linkers. Bioconjugate chemistry, 2008. 19(4): p. 849-859. 50. Zhao, J., et al., In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. Biomaterials, 2021. 268: p. 120542. 51. Basel, M.T., et al., A cell‐delivered and cell‐activated SN38‐dextran prodrug increases survival in a murine disseminated pancreatic cancer model. Small, 2012. 8(6): p. 913-920. 52. Palakurthi, S., Challenges in SN38 drug delivery: current success and future directions. Expert opinion on drug delivery, 2015. 12(12): p. 1911-1921. 53. Gottlieb, J.A., et al., Preliminary pharmacologic and clinical evaluation of camptothecin sodium (NSC-100880). Cancer chemotherapy reports, 1970. 54(6): p. 461-470. 54. Wani, M.C., et al., Plant antitumor agents. 18. Synthesis and biological activity of camptothecin analogs. Journal of medicinal chemistry, 1980. 23(5): p. 554-560. 55. Muggia, F.M., et al., Phasei: Clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical stduies. 1972. 56. Thakur, R., B. Sivakumar, and M. Savva, Thermodynamic studies and loading of 7-ethyl-10-hydroxycamptothecin into mesoporous silica particles MCM-41 in strongly acidic solutions. The Journal of Physical Chemistry B, 2010. 114(17): p. 5903-5911. 57. Ali, M.A., et al., Preparation and characterization of SN-38-encapsulated phytantriol cubosomes containing α-monoglyceride additives. Chemical and Pharmaceutical Bulletin, 2016. 64(6): p. 577-584. 58. Kin Ting Kam, R., et al., Retinoic acid synthesis and functions in early embryonic development. Cell & bioscience, 2012. 2(1): p. 1-14. 59. Bold, R.J., et al., All-trans-retinoic acid inhibits growth of human pancreatic cancer cell lines. Pancreas, 1996. 12(2): p. 189-195. 60. Chlapek, P., et al., Why differentiation therapy sometimes fails: molecular mechanisms of resistance to retinoids. International Journal of Molecular Sciences, 2018. 19(1): p. 132. 61. Szuts, E.Z. and F.I. Harosi, Solubility of retinoids in water. Archives of Biochemistry and Biophysics, 1991. 287(2): p. 297-304. 62. Muindi, J., et al., Continuous treatment with all-transretinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood, 1992. 79(2): p. 299-303. 63. Huang, Z., et al., Role of vitamin A in the immune system. Journal of clinical medicine, 2018. 7(9): p. 258. 64. Gudas, L.J., Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2012. 1821(1): p. 213-221. 65. Lokman, N.A., et al., Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. Journal of Experimental & Clinical Cancer Research, 2019. 38(1): p. 1-12. 66. Bama, E.S., et al., Synergistic effect of co-treatment with all-trans retinoic acid and 9-cis retinoic acid on human lung cancer cell line at molecular level. 3 Biotech, 2019. 9(4): p. 1-7. 67. Bachem, M.G., et al., Pancreatic stellate cells—role in pancreas cancer. Langenbeck's archives of surgery, 2008. 393(6): p. 891-900. 68. Sarper, M., et al., ATRA modulates mechanical activation of TGF-β by pancreatic stellate cells. Scientific reports, 2016. 6(1): p. 1-10. 69. Chronopoulos, A., et al., ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nature communications, 2016. 7(1): p. 1-12. 70. Qin, F., et al., Size-tunable fabrication of multifunctional Bi 2 O 3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale, 2014. 6(10): p. 5402-5409. 71. Raza, W., et al., Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. Journal of Alloys and Compounds, 2015. 648: p. 641-650. 72. Motakef-Kazemi, N., et al., Synthesis and characterization of bismuth oxide nanoparticle by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2021. 40(1): p. 11-19. 73. Gadea, G., A. Morata, and A. Tarancon, Semiconductor nanowires for thermoelectric generation, in Semiconductors and Semimetals. 2018, Elsevier. p. 321-407. 74. Liu, Y., K. Ai, and L. Lu, Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Accounts of chemical research, 2012. 45(10): p. 1817-1827. 75. Schwenzer, N.F., et al., Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. Journal of hepatology, 2009. 51(3): p. 433-445. 76. Kalender, W.A., X-ray computed tomography. Physics in Medicine & Biology, 2006. 51(13): p. R29. 77. Mjos, K.D. and C. Orvig, Metallodrugs in medicinal inorganic chemistry. Chemical reviews, 2014. 114(8): p. 4540-4563. 78. Ai, K., et al., Large‐scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X‐ray computed tomography imaging. Advanced materials, 2011. 23(42): p. 4886-4891. 79. Butterworth, K.T., et al., Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012. 4(16): p. 4830-4838. 80. Rosa, S., et al., Biological mechanisms of gold nanoparticle radiosensitization. Cancer nanotechnology, 2017. 8(1): p. 1-25. 81. Su, X.-Y., et al., Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer biology & medicine, 2014. 11(2): p. 86. 82. Liu, B., et al., Protecting the normal in order to better kill the cancer. Cancer medicine, 2015. 4(9): p. 1394-1403. 83. Rahman, W.N., et al., Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International journal of nanomedicine, 2014. 9: p. 2459. 84. Ovsyannikov, V., et al., Development of bismuth oxide-based nanopreparation for the destruction of malignant neoplasms: theoretical prerequisites, challenges, and practical approaches. Glass Physics and Chemistry, 2015. 41(5): p. 533-536. 85. Stewart, C., et al., First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 2016. 32(11): p. 1444-1452. 86. Liu, S. and M.Y. Han, Silica‐coated metal nanoparticles. Chemistry–An Asian Journal, 2010. 5(1): p. 36-45. 87. Wu, S.-H., C.-Y. Mou, and H.-P. Lin, Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013. 42(9): p. 3862-3875. 88. Sahoo, B., et al., Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. Journal of colloid and interface science, 2014. 431: p. 31-41. 89. Ferris, D.P., et al., Synthesis of biomolecule‐modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small, 2011. 7(13): p. 1816-1826. 90. Wallace, A.F., J.J. DeYoreo, and P.M. Dove, Kinetics of silica nucleation on carboxyl-and amine-terminated surfaces: insights for biomineralization. Journal of the American Chemical Society, 2009. 131(14): p. 5244-5250. 91. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological reviews, 2001. 53(2): p. 283-318. 92. Davis, M.E., Z. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanoscience and technology: A collection of reviews from nature journals, 2010: p. 239-250. 93. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Medical Applications, 2020: p. 61-91. 94. Yoo, J.-W., E. Chambers, and S. Mitragotri, Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Current pharmaceutical design, 2010. 16(21): p. 2298-2307. 95. Geng, Y., et al., Shape effects of filaments versus spherical particles in flow and drug delivery. Nature nanotechnology, 2007. 2(4): p. 249-255. 96. Alexis, F., et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 2008. 5(4): p. 505-515. 97. Xia, Q., et al., Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B, 2019. 9(4): p. 675-689. 98. Knop, K., et al., Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte chemie international edition, 2010. 49(36): p. 6288-6308. 99. Jiang, S. and Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials, 2010. 22(9): p. 920-932. 100. Yang, W., et al., Functionalizable and ultra stable nanoparticles coated with zwitterionic poly (carboxybetaine) in undiluted blood serum. Biomaterials, 2009. 30(29): p. 5617-5621. 101. Hu, C.-M.J., et al., Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences, 2011. 108(27): p. 10980-10985. 102. Schauer, R., Sialic acids as regulators of molecular and cellular interactions. Current opinion in structural biology, 2009. 19(5): p. 507-514. 103. Raveendran, P., J. Fu, and S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 2003. 125(46): p. 13940-13941. 104. Luk, B.T., et al., Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014. 6(5): p. 2730-2737. 105. Rothman, J.E. and J. Lenard, Membrane Asymmetry: The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science, 1977. 195(4280): p. 743-753. 106. Dhas, N., et al., Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. Journal of Controlled Release, 2022. 346: p. 71-97. 107. Copp, J.A., et al., Clearance of pathological antibodies using biomimetic nanoparticles. Proceedings of the National Academy of Sciences, 2014. 111(37): p. 13481-13486. 108. Hamidi, M. and H. Tajerzadeh, Carrier erythrocytes: an overview. Drug delivery, 2003. 10(1): p. 9-20. 109. Oldenborg, P.-A., et al., Role of CD47 as a marker of self on red blood cells. Science, 2000. 288(5473): p. 2051-2054. 110. Tsai, R.K., P.L. Rodriguez, and D.E. Discher, Self inhibition of phagocytosis: the affinity of ‘marker of self’CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells, Molecules, and Diseases, 2010. 45(1): p. 67-74. 111. Merkel, T.J., et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences, 2011. 108(2): p. 586-591. 112. Wang, D., et al., Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS nano, 2018. 12(6): p. 5241-5252. 113. Zhu, J.-Y., et al., Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano letters, 2016. 16(9): p. 5895-5901. 114. Chen, Z., et al., Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS nano, 2016. 10(11): p. 10049-10057. 115. Fang, R.H., et al., Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano letters, 2014. 14(4): p. 2181-2188. 116. Dehaini, D., et al., Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Advanced materials, 2017. 29(16): p. 1606209. 117. Li, L., et al., Actively targeted deep tissue imaging and photothermal‐chemo therapy of breast cancer by antibody‐functionalized drug‐loaded X‐ray‐responsive bismuth sulfide@ mesoporous silica core–shell nanoparticles. Advanced functional materials, 2018. 28(5): p. 1704623. 118. Lai, P.-Y., et al., Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. Rsc Advances, 2015. 5(119): p. 98222-98230. 119. Settembre, C. and A. Ballabio, Lysosome: regulator of lipid degradation pathways. Trends in cell biology, 2014. 24(12): p. 743-750. 120. Yalçın, S., et al., Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomedicine & Pharmacotherapy, 2014. 68(6): p. 737-743. 121. Masamune, A. and T. Shimosegawa, Signal transduction in pancreatic stellate cells. Journal of gastroenterology, 2009. 44(4): p. 249-260. 122. Froeling, F.E., et al., Retinoic acid–induced pancreatic stellate cell quiescence reduces paracrine Wnt–β-catenin signaling to slow tumor progression. Gastroenterology, 2011. 141(4): p. 1486-1497. e14. 123. Wang, H.-C., et al., Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8. Theranostics, 2019. 9(24): p. 7168.
|