帳號:guest(3.16.217.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林羿萱
作者(外文):Lin, Yi-Hsuan
論文名稱(中文):製備具有逆轉胰臟星狀細胞活化態的仿生雜合膜奈米藥物改變腫瘤微環境以提升胰臟癌的化療/放療效果
論文名稱(外文):Biomimetic membrane-camouflaged nanotherapeutics for stellate cell deactivation and tumor microenvironment remodeling to enhance chemo/radiotherapy against pancreatic cancer
指導教授(中文):邱信程
指導教授(外文):Chiu, Hsin-Cheng
口試委員(中文):姜文軒
駱俊良
口試委員(外文):Chiang, Wen-Hsuan
Lo, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:109012510
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:69
中文關鍵詞:氧化鉍奈米粒子細胞膜仿生奈米藥物胰臟癌化學治療胰臟癌放射治療
外文關鍵詞:bismuth oxide nanoparticlecell membrane camouflaged nanoparticlePDACchemotherapyradiotherapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1043
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用紅血球膜混合胰臟癌細胞膜的雜合膜包覆於中孔矽殼氧化鉍奈米粒子作為奈米載體,搭載化療藥物7-ethyl-10-hydroxycamptothecin (SN38) 及All-trans-retinoic acid (ATRA),結合了化學/放射治療,用以改變胰臟癌微環境並提高胰臟癌的治療效果。研究中採取溶劑熱合成法製備氧化鉍奈米粒子,接著將中孔矽殼包覆其外層提供載藥空間,最後以超聲處理將雜合膜包覆於載體外。本研究利用氧化鉍本身為高原子序的原子,具有高X射線衰減係數及增強輻射作用,能應用於CT造影的顯影劑及化療的輻射增敏劑,加上雜合膜的修飾利於延長奈米載體於體內循環的時間且具同源靶向的特性,增加奈米載體於腫瘤處的累積,提高化學/放射治療的效果。我們於體外材料鑑定中,藉由TEM證明出本研究成功開發出具殼核結構的雜合膜包覆的奈米粒子,也證實含鉍的奈米載體具有CT顯影劑的潛力,在細胞實驗中證明雜合膜包覆的奈米載體細胞攝取優於只有紅血球膜包覆的奈米載體,且於同源的細胞株具同源靶向效果,此結果將利於精準醫學的客製化療程。接著藉由細胞毒性測試證明我們開發出搭載藥物的奈米載體能夠誘導胰臟癌細胞的死亡,最後利用維生素A的油滴生成與否證明載藥奈米藥物可以促進細胞中的維生素A油滴生成於胰臟星狀細胞中,逆轉胰臟星狀細胞的活化態以改變腫瘤的微環境,本研究期許藉由改變腫瘤微環境高度沉積的ECM,提高載藥奈米粒子於腫瘤處的累積,增加化學/放射治療的成功策略。
In this study we prepare a hybrid membrane by mixing red blood cell membrane and pancreatic cancer cell membrane, and use it to coat bismuth oxide nanoparticles loaded with SN38 and ATRA. The hybrid membrane provided excellent camouflage for immune escape and long-term body circulation, while the combination of chemo/radiotherapy and tumor microenvironment modification improved therapeutic effect. Bismuth oxide (Bi2O3) nanoparticles prepared by solvothermal method were coated with mesoporous silica shell to provide a space for drug loading. After the loading of SN38 and ATRA, bismuth oxide nanoparticles were camouflaged by hybrid membrane by sonication method. We utilized high Z element bismuth to efficiently absorb ionizing radiation to enhance therapeutic efficiency of X-ray radiation therapy and use Bi2O3 as a contrast agent for CT imaging. The modification of the hybrid cell membrane with the homologous targeting effect prolonged blood circulation by suppressing immune attack thereby allowing higher accumulation of nanoparticles at tumor. In the material identification, TEM image show that we developed hybrid cell membrane-coated nanoparticles with a core-shell structure. We further confirmed the use of our nanoparticles as CT imaging contrast agents. In vitro experiments proved the superior cellular uptake of nanoparticles coated with hybrid cell membrane as compared to nanoparticles coated with red blood cell membrane alone. This result will be beneficial to the customized therapy of precision medicine. The cytotoxicity test proved that the nanotherapeutics (S-MBO@A-RPCM) can induce the death of cancer cells and pancreatic stellate cells. Finally, the substantial accumulation of Vit. A lipid droplets in pancreatic stellate cells treated with nanotherapeutics can reverse the pancreatic stellate cells activation to change tumor microenvironment. This study expects to increase the accumulation of nanoparticles in tumor site by decreasing the extracellular matrix deposition and enhance chemo/radiotherapy strategy.
目錄 i
圖目錄 iv
表目錄 vi
摘要 vii
Abstract viii
致謝 x
一、研究動機 1
二、文獻探討 3
2.1 胰臟癌 3
2.1.1 胰臟癌的腫瘤微環境 4
2.1.2 化學治療 7
2.1.3 放射治療 8
2.1.4 醫學影像診斷系統 9
2.2 癌症治療策略與介紹 11
2.2.1 奈米藥物載體傳遞系統 11
2.2.2 Enhanced Permeation and Retention effects (EPR effects) 12
2.2.3 化療藥物7-ethyl-10-hydroxycamptothecin(SN38)介紹 13
2.2.4 All-trans-retinoic acid(ATRA)介紹 15
2.2.5 氧化鉍 16
2.2.6 中孔矽殼包覆奈米粒子之應用 19
2.2.7 細胞膜包覆奈米載體介紹 20
三、研究方法 26
3.1 材料合成與鑑定 26
3.1.1 氧化鉍奈米粒子 (Bi2O3) 製備 26
3.1.2 中孔矽殼包覆Bi2O3 (mesoporous silica coated Bi2O3, MBO) 合成 26
3.1.3 紅血球融合胰臟癌細胞膜之雜合膜包覆MBO (red blood cell membrane mixed pancreatic cancer cell membrane camouflaged MBO, MBO@RPCM) 製備 27
3.2 奈米載體製備與性質探討 29
3.2.1 搭載SN38及ATRA之奈米載體置備 29
3.2.2 奈米載體的粒徑分布以及表面電荷分析 30
3.2.3 奈米載體穩定度測試 31
3.2.4 奈米載體的CT顯影功能 32
3.2.5 膠體電泳分析奈米載體上保留之蛋白 32
3.2.6 奈米載體的藥物裝載量 33
3.3 體外細胞實驗 34
3.3.1 細胞來源及適合之培養環境 34
3.3.2 配置細胞培養液 35
3.3.3 細胞繼代 35
3.3.4 細胞計數 36
3.3.5 細胞對SN38及奈米載體吞噬情形分析 37
3.3.6 細胞毒性分析 39
3.3.7 誘導活化態的PSC轉變成靜止態 40
3.3.8 以Clonogenic survival assay探討放射線治療對細胞分裂之影響 41
四、結果與討論 43
4.1 奈米載體特性分析 43
4.1.1 奈米載體之性質鑑定 43
4.1.2 利用SDS-PAGE進行奈米載體之膜蛋白保留分析 48
4.1.3 奈米載體於CT顯影的材料分析 49
4.1.4 奈米載體於體外模擬生理環境下之穩定性 50
4.2 體外細胞實驗 51
4.2.1 細胞對奈米載體之吞噬情況 51
4.2.2 奈米載體對細胞毒性之分析 54
4.2.3 體外誘導活化態PSC轉變為靜止態 57
4.2.4 癌細胞之細胞分裂能力評估 58
五、結論 60
六、文獻參考 61

1. Notarstefano, V., et al., Investigation of human pancreatic cancer tissues by Fourier Transform Infrared Hyperspectral Imaging. Journal of Biophotonics, 2020. 13(4): p. e201960071.
2. Pancreatic Cancer Stages. https://immunoviainc.com/about-pancreatic-cancer/pancreatic-cancer-staging/
3. Anderson, E.M., et al., Advances in pancreatic ductal adenocarcinoma treatment. Cancers, 2021. 13(21): p. 5510.
4. Cid-Arregui, A. and V. Juarez, Perspectives in the treatment of pancreatic adenocarcinoma. World journal of gastroenterology: WJG, 2015. 21(31): p. 9297.
5. Seufferlein, T. and T.J. Ettrich, Treatment of pancreatic cancer—neoadjuvant treatment in resectable pancreatic cancer (PDAC). Translational gastroenterology and hepatology, 2019. 4.
6. Sugimoto, M., et al., Survival benefit of neoadjuvant therapy in patients with non‐metastatic pancreatic ductal adenocarcinoma: a propensity matching and intention‐to‐treat analysis. Journal of surgical oncology, 2019. 120(6): p. 976-984.
7. Hu, X., et al., Tailor‐Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science, 2021. 8(7): p. 2002545.
8. Von Ahrens, D., et al., The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of hematology & oncology, 2017. 10(1): p. 1-8.
9. Wang, Z., et al., Disrupting the balance between tumor epithelia and stroma is a possible therapeutic approach for pancreatic cancer. Medical science monitor: international medical journal of experimental and clinical research, 2014. 20: p. 2002.
10. Wang, D., et al., The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers, 2022. 14(16): p. 3998.
11. Ho, W.J., E.M. Jaffee, and L. Zheng, The tumour microenvironment in pancreatic cancer—clinical challenges and opportunities. Nature reviews Clinical oncology, 2020. 17(9): p. 527-540.
12. Phillips, P., et al., Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut, 2003. 52(2): p. 275-282.
13. Apte, M., et al., Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas, 2004. 29(3): p. 179-187.
14. Masamune, A., et al., Rho kinase inhibitors block activation of pancreatic stellate cells. British journal of pharmacology, 2003. 140(7): p. 1292-1302.
15. Apte, M.V., R.C. Pirola, and J.S. Wilson, Pancreatic stellate cells: a starring role in normal and diseased pancreas. Frontiers in physiology, 2012. 3: p. 344.
16. Truong, L.-H. and S. Pauklin, Pancreatic cancer microenvironment and cellular composition: current understandings and therapeutic approaches. Cancers, 2021. 13(19): p. 5028.
17. Jacobetz, M.A., et al., Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 2013. 62(1): p. 112-120.
18. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009. 324(5933): p. 1457-1461.
19. Schnittert, J., R. Bansal, and J. Prakash, Targeting pancreatic stellate cells in cancer. Trends in cancer, 2019. 5(2): p. 128-142.
20. Paulson, A.S., et al., Therapeutic advances in pancreatic cancer. Gastroenterology, 2013. 144(6): p. 1316-1326.
21. 高祥豐醫師, 臺.腫., 胰臟癌化學治療與標靶治療的現況與進展. http://web.tccf.org.tw/lib/addon.php?act=post&id=4013.
22. Andersson, R., et al., Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scandinavian journal of gastroenterology, 2009. 44(7): p. 782-786.
23. Amrutkar, M. and I.P. Gladhaug, Pancreatic cancer chemoresistance to gemcitabine. Cancers, 2017. 9(11): p. 157.
24. Shirasaka, T., Development history and concept of an oral anticancer agent S-1 (TS-1®): its clinical usefulness and future vistas. Japanese journal of clinical oncology, 2009. 39(1): p. 2-15.
25. Conroy, T., et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New England journal of medicine, 2011. 364(19): p. 1817-1825.
26. Pusceddu, S., et al., Comparative effectiveness of gemcitabine plus nab-paclitaxel and FOLFIRINOX in the first-line setting of metastatic pancreatic cancer: a systematic review and meta-analysis. Cancers, 2019. 11(4): p. 484.
27. Glassman, D.C., et al., Nanoliposomal irinotecan with fluorouracil for the treatment of advanced pancreatic cancer, a single institution experience. BMC cancer, 2018. 18(1): p. 1-10.
28. Yip, D., et al., Chemotherapy and radiotherapy for inoperable advanced pancreatic cancer. Cochrane database of systematic reviews, 2006(3).
29. Du, F., et al., Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. International Journal of Nanomedicine, 2017. 12: p. 5973.
30. Prise, K.M. and J.M. O'sullivan, Radiation-induced bystander signalling in cancer therapy. Nature Reviews Cancer, 2009. 9(5): p. 351-360.
31. Bittner, M.-I., A.-L. Grosu, and T.B. Brunner, Comparison of toxicity after IMRT and 3D-conformal radiotherapy for patients with pancreatic cancer–a systematic review. Radiotherapy and Oncology, 2015. 114(1): p. 117-121.
32. Miura, F., et al., Diagnosis of pancreatic cancer. HPB, 2006. 8(5): p. 337-342.
33. Raptopoulos, V., et al., The use of helical CT and CT angiography to predict vascular involvement from pancreatic cancer: correlation with findings at surgery. AJR. American journal of roentgenology, 1997. 168(4): p. 971-977.
34. Lusic, H. and M.W. Grinstaff, X-ray-computed tomography contrast agents. Chemical reviews, 2013. 113(3): p. 1641-1666.
35. Mattrey, R.F. and D.A. Aguirre, Advances in contrast media research1. Academic radiology, 2003. 10(12): p. 1450-1460.
36. Ross, J.S., et al., Targeted therapies for cancer 2004. American journal of clinical pathology, 2004. 122(4): p. 598-609.
37. Yang, G., et al., Bioinspired core–shell nanoparticles for hydrophobic drug delivery. Angewandte Chemie, 2019. 131(40): p. 14495-14502.
38. Su, C.-W., et al., Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine, 2014. 9(10): p. 1499-1515.
39. Cho, K., et al., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008. 14(5): p. 1310-1316.
40. Shen, Z., M.-P. Nieh, and Y. Li, Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers, 2016. 8(3): p. 83.
41. Acharya, S. and S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 170-183.
42. Byrne, J.D., T. Betancourt, and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews, 2008. 60(15): p. 1615-1626.
43. Letfullin, R.R., et al., Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. 2006.
44. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12_Part_1): p. 6387-6392.
45. Maeda, H., Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release, 2012. 164(2): p. 138-144.
46. Subhan, M.A., et al., Recent advances in tumor targeting via EPR effect for cancer treatment. Journal of personalized medicine, 2021. 11(6): p. 571.
47. Abdalla, A.M., et al., Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018. 8(2): p. 533.
48. Bala, V., et al., Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. Journal of controlled release, 2013. 172(1): p. 48-61.
49. Zhao, H., et al., Novel prodrugs of SN38 using multiarm poly (ethylene glycol) linkers. Bioconjugate chemistry, 2008. 19(4): p. 849-859.
50. Zhao, J., et al., In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. Biomaterials, 2021. 268: p. 120542.
51. Basel, M.T., et al., A cell‐delivered and cell‐activated SN38‐dextran prodrug increases survival in a murine disseminated pancreatic cancer model. Small, 2012. 8(6): p. 913-920.
52. Palakurthi, S., Challenges in SN38 drug delivery: current success and future directions. Expert opinion on drug delivery, 2015. 12(12): p. 1911-1921.
53. Gottlieb, J.A., et al., Preliminary pharmacologic and clinical evaluation of camptothecin sodium (NSC-100880). Cancer chemotherapy reports, 1970. 54(6): p. 461-470.
54. Wani, M.C., et al., Plant antitumor agents. 18. Synthesis and biological activity of camptothecin analogs. Journal of medicinal chemistry, 1980. 23(5): p. 554-560.
55. Muggia, F.M., et al., Phasei: Clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical stduies. 1972.
56. Thakur, R., B. Sivakumar, and M. Savva, Thermodynamic studies and loading of 7-ethyl-10-hydroxycamptothecin into mesoporous silica particles MCM-41 in strongly acidic solutions. The Journal of Physical Chemistry B, 2010. 114(17): p. 5903-5911.
57. Ali, M.A., et al., Preparation and characterization of SN-38-encapsulated phytantriol cubosomes containing α-monoglyceride additives. Chemical and Pharmaceutical Bulletin, 2016. 64(6): p. 577-584.
58. Kin Ting Kam, R., et al., Retinoic acid synthesis and functions in early embryonic development. Cell & bioscience, 2012. 2(1): p. 1-14.
59. Bold, R.J., et al., All-trans-retinoic acid inhibits growth of human pancreatic cancer cell lines. Pancreas, 1996. 12(2): p. 189-195.
60. Chlapek, P., et al., Why differentiation therapy sometimes fails: molecular mechanisms of resistance to retinoids. International Journal of Molecular Sciences, 2018. 19(1): p. 132.
61. Szuts, E.Z. and F.I. Harosi, Solubility of retinoids in water. Archives of Biochemistry and Biophysics, 1991. 287(2): p. 297-304.
62. Muindi, J., et al., Continuous treatment with all-transretinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood, 1992. 79(2): p. 299-303.
63. Huang, Z., et al., Role of vitamin A in the immune system. Journal of clinical medicine, 2018. 7(9): p. 258.
64. Gudas, L.J., Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2012. 1821(1): p. 213-221.
65. Lokman, N.A., et al., Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. Journal of Experimental & Clinical Cancer Research, 2019. 38(1): p. 1-12.
66. Bama, E.S., et al., Synergistic effect of co-treatment with all-trans retinoic acid and 9-cis retinoic acid on human lung cancer cell line at molecular level. 3 Biotech, 2019. 9(4): p. 1-7.
67. Bachem, M.G., et al., Pancreatic stellate cells—role in pancreas cancer. Langenbeck's archives of surgery, 2008. 393(6): p. 891-900.
68. Sarper, M., et al., ATRA modulates mechanical activation of TGF-β by pancreatic stellate cells. Scientific reports, 2016. 6(1): p. 1-10.
69. Chronopoulos, A., et al., ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nature communications, 2016. 7(1): p. 1-12.
70. Qin, F., et al., Size-tunable fabrication of multifunctional Bi 2 O 3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale, 2014. 6(10): p. 5402-5409.
71. Raza, W., et al., Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. Journal of Alloys and Compounds, 2015. 648: p. 641-650.
72. Motakef-Kazemi, N., et al., Synthesis and characterization of bismuth oxide nanoparticle by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2021. 40(1): p. 11-19.
73. Gadea, G., A. Morata, and A. Tarancon, Semiconductor nanowires for thermoelectric generation, in Semiconductors and Semimetals. 2018, Elsevier. p. 321-407.
74. Liu, Y., K. Ai, and L. Lu, Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Accounts of chemical research, 2012. 45(10): p. 1817-1827.
75. Schwenzer, N.F., et al., Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. Journal of hepatology, 2009. 51(3): p. 433-445.
76. Kalender, W.A., X-ray computed tomography. Physics in Medicine & Biology, 2006. 51(13): p. R29.
77. Mjos, K.D. and C. Orvig, Metallodrugs in medicinal inorganic chemistry. Chemical reviews, 2014. 114(8): p. 4540-4563.
78. Ai, K., et al., Large‐scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X‐ray computed tomography imaging. Advanced materials, 2011. 23(42): p. 4886-4891.
79. Butterworth, K.T., et al., Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012. 4(16): p. 4830-4838.
80. Rosa, S., et al., Biological mechanisms of gold nanoparticle radiosensitization. Cancer nanotechnology, 2017. 8(1): p. 1-25.
81. Su, X.-Y., et al., Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer biology & medicine, 2014. 11(2): p. 86.
82. Liu, B., et al., Protecting the normal in order to better kill the cancer. Cancer medicine, 2015. 4(9): p. 1394-1403.
83. Rahman, W.N., et al., Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International journal of nanomedicine, 2014. 9: p. 2459.
84. Ovsyannikov, V., et al., Development of bismuth oxide-based nanopreparation for the destruction of malignant neoplasms: theoretical prerequisites, challenges, and practical approaches. Glass Physics and Chemistry, 2015. 41(5): p. 533-536.
85. Stewart, C., et al., First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 2016. 32(11): p. 1444-1452.
86. Liu, S. and M.Y. Han, Silica‐coated metal nanoparticles. Chemistry–An Asian Journal, 2010. 5(1): p. 36-45.
87. Wu, S.-H., C.-Y. Mou, and H.-P. Lin, Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013. 42(9): p. 3862-3875.
88. Sahoo, B., et al., Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. Journal of colloid and interface science, 2014. 431: p. 31-41.
89. Ferris, D.P., et al., Synthesis of biomolecule‐modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small, 2011. 7(13): p. 1816-1826.
90. Wallace, A.F., J.J. DeYoreo, and P.M. Dove, Kinetics of silica nucleation on carboxyl-and amine-terminated surfaces: insights for biomineralization. Journal of the American Chemical Society, 2009. 131(14): p. 5244-5250.
91. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological reviews, 2001. 53(2): p. 283-318.
92. Davis, M.E., Z. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanoscience and technology: A collection of reviews from nature journals, 2010: p. 239-250.
93. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Medical Applications, 2020: p. 61-91.
94. Yoo, J.-W., E. Chambers, and S. Mitragotri, Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Current pharmaceutical design, 2010. 16(21): p. 2298-2307.
95. Geng, Y., et al., Shape effects of filaments versus spherical particles in flow and drug delivery. Nature nanotechnology, 2007. 2(4): p. 249-255.
96. Alexis, F., et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 2008. 5(4): p. 505-515.
97. Xia, Q., et al., Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B, 2019. 9(4): p. 675-689.
98. Knop, K., et al., Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte chemie international edition, 2010. 49(36): p. 6288-6308.
99. Jiang, S. and Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials, 2010. 22(9): p. 920-932.
100. Yang, W., et al., Functionalizable and ultra stable nanoparticles coated with zwitterionic poly (carboxybetaine) in undiluted blood serum. Biomaterials, 2009. 30(29): p. 5617-5621.
101. Hu, C.-M.J., et al., Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences, 2011. 108(27): p. 10980-10985.
102. Schauer, R., Sialic acids as regulators of molecular and cellular interactions. Current opinion in structural biology, 2009. 19(5): p. 507-514.
103. Raveendran, P., J. Fu, and S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 2003. 125(46): p. 13940-13941.
104. Luk, B.T., et al., Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014. 6(5): p. 2730-2737.
105. Rothman, J.E. and J. Lenard, Membrane Asymmetry: The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science, 1977. 195(4280): p. 743-753.
106. Dhas, N., et al., Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. Journal of Controlled Release, 2022. 346: p. 71-97.
107. Copp, J.A., et al., Clearance of pathological antibodies using biomimetic nanoparticles. Proceedings of the National Academy of Sciences, 2014. 111(37): p. 13481-13486.
108. Hamidi, M. and H. Tajerzadeh, Carrier erythrocytes: an overview. Drug delivery, 2003. 10(1): p. 9-20.
109. Oldenborg, P.-A., et al., Role of CD47 as a marker of self on red blood cells. Science, 2000. 288(5473): p. 2051-2054.
110. Tsai, R.K., P.L. Rodriguez, and D.E. Discher, Self inhibition of phagocytosis: the affinity of ‘marker of self’CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells, Molecules, and Diseases, 2010. 45(1): p. 67-74.
111. Merkel, T.J., et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences, 2011. 108(2): p. 586-591.
112. Wang, D., et al., Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS nano, 2018. 12(6): p. 5241-5252.
113. Zhu, J.-Y., et al., Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano letters, 2016. 16(9): p. 5895-5901.
114. Chen, Z., et al., Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS nano, 2016. 10(11): p. 10049-10057.
115. Fang, R.H., et al., Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano letters, 2014. 14(4): p. 2181-2188.
116. Dehaini, D., et al., Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Advanced materials, 2017. 29(16): p. 1606209.
117. Li, L., et al., Actively targeted deep tissue imaging and photothermal‐chemo therapy of breast cancer by antibody‐functionalized drug‐loaded X‐ray‐responsive bismuth sulfide@ mesoporous silica core–shell nanoparticles. Advanced functional materials, 2018. 28(5): p. 1704623.
118. Lai, P.-Y., et al., Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. Rsc Advances, 2015. 5(119): p. 98222-98230.
119. Settembre, C. and A. Ballabio, Lysosome: regulator of lipid degradation pathways. Trends in cell biology, 2014. 24(12): p. 743-750.
120. Yalçın, S., et al., Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomedicine & Pharmacotherapy, 2014. 68(6): p. 737-743.
121. Masamune, A. and T. Shimosegawa, Signal transduction in pancreatic stellate cells. Journal of gastroenterology, 2009. 44(4): p. 249-260.
122. Froeling, F.E., et al., Retinoic acid–induced pancreatic stellate cell quiescence reduces paracrine Wnt–β-catenin signaling to slow tumor progression. Gastroenterology, 2011. 141(4): p. 1486-1497. e14.
123. Wang, H.-C., et al., Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8. Theranostics, 2019. 9(24): p. 7168.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具酸鹼/活性氧自由基應答性奈米傳輸系統於癌症化學/熱/放射合併治療之開發與應用
2. 多功能之酸鹼應答型高分子複合液胞於藥物傳遞與核磁共振應用之探討
3. 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
4. 開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統
5. 開發具磁性與酸鹼應答性複合高分子液胞作為腫瘤標的藥物傳遞及MR影像顯影之診斷治療奈米平台
6. 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
7. 裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估
8. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
9. 利用腫瘤趨向性單核球對腫瘤缺氧區域傳遞裝載超順磁奈米氧化鐵/Chlorin e6的高分子含氧氣胞用以改善磁熱及光動力治療的療效
10. 開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療
11. 利用腫瘤趨向性脂肪幹細胞攜帶智慧型奈米微粒對膠質母細胞瘤進行靶向傳遞及化學治療
12. 具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
13. 開發具氧化應答性奈米給藥傳輸系統於放射/化學複合療法應用
14. 開發雙重標靶口服多醣體/脂質複合奈米化療傳輸系統進行大腸癌治療
15. 開發次微米磁棒攪拌系統捕捉類澱粉蛋白寡聚體以發展新型阿茲海默氏症治療策略
 
* *