帳號:guest(18.117.185.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何秀倩
作者(外文):He, Xiu-Qian
論文名稱(中文):開發具有光熱和抗氧化作用的碳化聚兒茶素奈米粒子用於類風濕性關節炎治療
論文名稱(外文):Development of carbonized polycatechin nanoparticles with photothermal and antioxidant effects for rheumatoid arthritis treatment
指導教授(中文):邱信程
指導教授(外文):Chiu, Hsin-Cheng
口試委員(中文):姜文軒
黃郁棻
口試委員(外文):Chiang, Wen-Hsuan
Huang, Yu-Fen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:109012504
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:59
中文關鍵詞:兒茶素抗氧化抗發炎光熱升溫類風濕性關節炎
外文關鍵詞:Catechinanti-oxidationanti-inflammationphotothermalrheumatoid arthritis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
類風濕性關節炎是一種慢性自體免疫疾病,會引起滑膜關節炎症、骨質破壞和變形。其主要原因之一是炎症細胞如M1型巨噬細胞的浸潤。此外,滑膜關節中活性氧化物質的不斷積累也加劇了類風濕性關節炎的病程進展和嚴重程度。因此,消除M1型巨噬細胞或誘導細胞向M2型極化的策略,可用於類風濕性關節炎治療。兒茶素能清除自由基,降低體內發炎物質產生,有助於減緩類風濕性關節炎症狀。為增加溶解度從而提升身體利用率,本研究通過在210 °C 下煅燒兒茶素並在鹼性條件下聚合1小時,開發了一種碳化聚兒茶素(c-pCh)奈米粒子,並用於類風濕性關節炎治療。相較於兒茶素分子,碳化後的c-pCh具有良好的光熱轉換特性,能用於光熱治療促進炎症細胞的壞死或凋亡。c-pCh同時保留了前驅物的抗氧化能力,可降低促炎細胞因子的表達量,誘導巨噬細胞M2型極化。綜上所述,本研究開發 c-pCh奈米粒子作為一種多合一的奈米治療劑,能介導光熱合併抗發炎作用,未來若有機會應用在類風濕性關節炎的模型上,可針對發炎關節腔進行治療,在類風濕性關節炎治療應用上極具發展潛力。
Rheumatoid arthritis is a chronic autoimmune disease that causes synovial joint inflammation, bone destruction and deformation. One of the main reasons for this is the infiltration of inflammatory cells such as M1 macrophages. In addition, the continuous accumulation of reactive oxidative species in synovial joints also exacerbates the progression and severity of rheumatoid arthritis. Therefore, strategies to eliminate M1-type macrophages or induce polarization to M2-type can be used in the treatment of rheumatoid arthritis. Catechin can scavenge free radicals, reduce the production of inflammatory cytokines, and help slow down the symptoms of rheumatoid arthritis. In order to increase the solubility and thus enhance the body utilization, this study developed a carbonized polycatechin (c-pCh) nanoparticles by calcining catechins at 210 °C and polymerizing them under alkaline conditions for 1 hour, and used in Rheumatoid arthritis treatment. Compared with catechin, carbonized c-pCh has good photothermal conversion properties, and can be used for photothermal therapy to promote necrosis or apoptosis of inflammatory cells. At the same time, c-pCh retains the antioxidant ability of the precursor, can reduce the expression of pro-inflammatory cytokines. In summary, this study developed c-pCh nanoparticles as an all-in-one nanotherapeutic agent that can mediate photothermal and anti-inflammatory effects. Targeting the treatment of inflamed joint cavity has great development potential in the application of rheumatoid arthritis treatment.
摘要 I
Abstract II
圖目錄 VII
第一章 研究動機 1
第二章 文獻回顧 4
2.1 類風濕性關節炎之概況 4
2.2 類風濕性關節炎之成因 5
2.2.1 類風濕性關節炎與巨噬細胞之關聯 5
2.2.2 類風濕性關節炎與活性氧物質之關聯 7
2.3 類風濕性關節炎之治療 8
2.3.1 治療類風濕性關節炎之常規藥物 8
2.3.2 光熱療法應用於治療類風濕性關節炎 11
2.3.3 新興奈米藥物應用於類風濕性關節炎 14
2.3.4 多酚與類黃酮的抗炎作用 18
第三章 材料與方法 24
3.1 實驗藥品 24
3.2 實驗儀器 26
3.3 材料合成 27
3.3.1 製備Ch 27
3.3.2 製備pCh 27
3.3.3 製備c-pCh 27
3.4 材料基本鑑定 28
3.4.1 吸收光譜分析 28
3.4.2 螢光光譜分析 28
3.4.3 粒徑分析 28
3.4.4 元素分析 28
3.4.5 官能基團鑑定 29
3.4.6 拉曼光譜分析碳化結構 29
3.4.7 抗氧化能力測試 29
3.4.8 光熱特性測試 29
3.5 體外細胞實驗 30
3.5.1 細胞株及培養環境 30
3.5.2 細胞培養液配製與磷酸鹽緩衝溶液 30
3.5.3 細胞繼代 31
3.5.4 細胞計數 31
3.5.5 細胞毒性分析 32
3.5.6 細胞對奈米粒子吞噬情形分析 32
3.5.7 細胞中奈米粒子抗氧化能力分析 33
3.5.8 細胞因子分泌量分析 33
第四章 結果與討論 34
4.1 pCh和c-pCh基本鑑定 34
4.1.1 吸收光譜分析 34
4.1.2 螢光光譜分析 36
4.1.3 粒徑分析 37
4.1.4 元素分析 40
4.1.5 官能基團分析 41
4.1.6 拉曼光譜分析碳化結構 42
4.1.7 抗氧化能力測試 43
4.1.8 c-pCh的光熱升溫效果測試 44
4.2 細胞實驗 45
4.2.1 c-pCh與NIR對RAW 264.7細胞存活率之影響 45
4.2.2 細胞對奈米粒子吞噬情形分析 46
4.2.3 c-pCh於細胞中清除ROS的能力分析 47
4.2.4 細胞因子分泌量分析 49
第五章 結論 51
參考文獻 52
1. HealthCentral Rheumatoid Arthritis: Everything You Need to Know. https://www.healthcentral.com/condition/rheumatoid-arthritis.
2. Zangger, P.; Keystone, E. C.; Bogoch, E. R., Asymmetry of small joint involvement in rheumatoid arthritis: prevalence and tendency towards symmetry over time. Joint Bone Spine 2005, 72 (3), 241-247.
3. Gadeval, A.; Chaudhari, S.; Bollampally, S. P.; Polaka, S.; Kalyane, D.; Sengupta, P.; Kalia, K.; Tekade, R. K., Integrated nanomaterials for non-invasive photothermal therapy of rheumatoid arthritis. Drug Discovery Today 2021, 26 (10), 2315-2328.
4. Ospelt, C.; Gay, S., Epigenetic epidemiology of inflammation and rheumatoid arthritis. In Epigenetic Epidemiology, Springer: 2022; pp 363-380.
5. Yang, X.; Chang, Y.; Wei, W., Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell proliferation 2020, 53 (7), e12854.
6. Zhang, Q.; Dehaini, D.; Zhang, Y.; Zhou, J.; Chen, X.; Zhang, L.; Fang, R. H.; Gao, W.; Zhang, L., Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature nanotechnology 2018, 13 (12), 1182-1190.
7. Christman, L. M.; Gu, L., Efficacy and mechanisms of dietary polyphenols in mitigating rheumatoid arthritis. Journal of Functional Foods 2020, 71, 104003.
8. Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M., Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomedicine & Pharmacotherapy 2016, 80, 30-41.
9. Udalova, I. A.; Mantovani, A.; Feldmann, M., Macrophage heterogeneity in the context of rheumatoid arthritis. Nature Reviews Rheumatology 2016, 12 (8), 472-485.
10. Bullock, J.; Rizvi, S. A.; Saleh, A. M.; Ahmed, S. S.; Do, D. P.; Ansari, R. A.; Ahmed, J., Rheumatoid arthritis: a brief overview of the treatment. Medical Principles and Practice 2018, 27 (6), 501-507.
11. Fonseca, L. J. S. d.; Nunes-Souza, V.; Goulart, M. O. F.; Rabelo, L. A., Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies. Oxidative medicine and cellular longevity 2019, 2019.
12. Kourilovitch, M.; Galarza-Maldonado, C.; Ortiz-Prado, E., Diagnosis and classification of rheumatoid arthritis. Journal of autoimmunity 2014, 48, 26-30.
13. Gaffo, A.; Saag, K. G.; Curtis, J. R., Treatment of rheumatoid arthritis. American journal of health-system pharmacy 2006, 63 (24), 2451-2465.
14. Yousefi, B.; Jadidi-Niaragh, F.; Azizi, G.; Hajighasemi, F.; Mirshafiey, A., The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Modern rheumatology 2014, 24 (2), 225-235.
15. Firestein, G. S.; McInnes, I. B., Immunopathogenesis of rheumatoid arthritis. Immunity 2017, 46 (2), 183-196.
16. Smolen, J. S.; Aletaha, D., Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nature Reviews Rheumatology 2015, 11 (5), 276-289.
17. Burmester, G. R.; Feist, E.; Dörner, T., Emerging cell and cytokine targets in rheumatoid arthritis. Nature Reviews Rheumatology 2014, 10 (2), 77-88.
18. Haringman, J. J.; Gerlag, D. M.; Zwinderman, A. H.; Smeets, T. J.; Kraan, M. C.; Baeten, D.; McInnes, I. B.; Bresnihan, B.; Tak, P., Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Annals of the rheumatic diseases 2005, 64 (6), 834-838.
19. Li, S.; Su, J.; Cai, W.; Liu, J.-x., Nanomaterials manipulate macrophages for rheumatoid arthritis treatment. Frontiers in Pharmacology 2021, 1570.
20. Wang, P.; Li, A.; Yu, L.; Chen, Y.; Xu, D., Energy conversion-based nanotherapy for rheumatoid arthritis treatment. Frontiers in Bioengineering and Biotechnology 2020, 8, 652.
21. Jeon, C.; Ahn, J.; Chai, J.; Kim, H.; Bae, E.; Park, S.; Cho, E.; Cha, H.; Ahn, K.; Koh, E., Hypoxia appears at pre-arthritic stage and shows co-localization with early synovial inflammation in collagen induced arthritis. Clinical and experimental rheumatology 2008, 26 (4), 646-648.
22. Peters, C.; Morris, C.; Mapp, P.; Blake, D.; Lewis, C.; Winrow, V., The transcription factors hypoxia‐inducible factor 1α and Ets‐1 colocalize in the hypoxic synovium of inflamed joints in adjuvant‐induced arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 2004, 50 (1), 291-296.
23. Kim, J.; Kim, H. Y.; Song, S. Y.; Go, S.-h.; Sohn, H. S.; Baik, S.; Soh, M.; Kim, K.; Kim, D.; Kim, H.-C., Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS nano 2019, 13 (3), 3206-3217.
24. Phull, A.-R.; Nasir, B.; ul Haq, I.; Kim, S. J., Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chemico-biological interactions 2018, 281, 121-136.
25. Zhou, J.; Liu, W.; Zhao, X.; Xian, Y.; Wu, W.; Zhang, X.; Zhao, N.; Xu, F. J.; Wang, C., Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Advanced Science 2021, 8 (20), 2100505.
26. Zheng, C.; Wu, A.; Zhai, X.; Ji, H.; Chen, Z.; Chen, X.; Yu, X., The cellular immunotherapy of integrated photothermal anti-oxidation Pd–Se nanoparticles in inhibition of the macrophage inflammatory response in rheumatoid arthritis. Acta Pharmaceutica Sinica B 2021, 11 (7), 1993-2003.
27. Vane, J. R.; Botting, R. M., Anti-inflammatory drugs and their mechanism of action. Inflammation Research 1998, 47 (2), 78-87.
28. Smolen, J. S.; Landewé, R.; Breedveld, F. C.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gorter, S.; Knevel, R.; Nam, J.; Schoels, M., EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Annals of the rheumatic diseases 2010, 69 (6), 964-975.
29. Combe, B.; Landewe, R.; Daien, C. I.; Hua, C.; Aletaha, D.; Álvaro-Gracia, J. M.; Bakkers, M.; Brodin, N.; Burmester, G. R.; Codreanu, C., 2016 update of the EULAR recommendations for the management of early arthritis. Annals of the rheumatic diseases 2017, 76 (6), 948-959.
30. Hua, C.; Buttgereit, F.; Combe, B., Glucocorticoids in rheumatoid arthritis: current status and future studies. RMD open 2020, 6 (1), e000536.
31. Rein, P.; Mueller, R. B., Treatment with biologicals in rheumatoid arthritis: an overview. Rheumatology and therapy 2017, 4 (2), 247-261.
32. den Broeder, A. A.; van Herwaarden, N.; van den Bemt, B. J., Therapeutic drug monitoring of biologicals in rheumatoid arthritis: a disconnect between beliefs and facts. Current Opinion in Rheumatology 2018, 30 (3), 266-275.
33. Tovey, M. G.; Lallemand, C., Immunogenicity and other problems associated with the use of biopharmaceuticals. Therapeutic Advances in Drug Safety 2011, 2 (3), 113-128.
34. Mann, D. L., Innate immunity and the failing heart: the cytokine hypothesis revisited. Circulation research 2015, 116 (7), 1254-1268.
35. Curtis, J. R.; Singh, J. A., Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clinical therapeutics 2011, 33 (6), 679-707.
36. Mok, C. C., Rituximab for the treatment of rheumatoid arthritis: an update. Drug design, development and therapy 2014, 8, 87.
37. Emer, J. J.; Claire, W., Rituximab: a review of dermatological applications. The Journal of clinical and aesthetic dermatology 2009, 2 (5), 29.
38. Rosman, Z.; Shoenfeld, Y.; Zandman-Goddard, G., Biologic therapy for autoimmune diseases: an update. BMC medicine 2013, 11 (1), 1-12.
39. Gómez-Gómez, G. J.; Masedo, Á.; Yela, C.; del Pilar Martínez-Montiel, M.; Casís, B., Current stage in inflammatory bowel disease: What is next? World journal of gastroenterology: WJG 2015, 21 (40), 11282.
40. Hodge, J. A.; Kawabata, T. T.; Krishnaswami, S.; Clark, J. D.; Telliez, J.-B.; Dowty, M. E.; Menon, S.; Lamba, M.; Zwillich, S., The mechanism of action of tofacitinib-an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 2016, 34 (2), 318-328.
41. Cada, D. J.; Demaris, K.; Levien, T. L.; Baker, D. E., Tofacitinib. Hospital pharmacy 2013, 48 (5), 413-424.
42. Streufert, B. D.; Onyedimma, C.; Yolcu, Y. U.; Ghaith, A. K.; Elder, B. D.; Nassr, A.; Currier, B.; Sebastian, A. S.; Bydon, M., Rheumatoid Arthritis in Spine Surgery: A Systematic Review and Meta-Analysis. Global Spine Journal 2022, 21925682211057543.
43. Yano, K.; Ikari, K.; Tobimatsu, H.; Tominaga, A.; Okazaki, K., Joint-preserving surgery for forefoot deformities in patients with rheumatoid arthritis: a literature review. International journal of environmental research and public health 2021, 18 (8), 4093.
44. Fong, J. F.; Ng, Y. H.; Ng, S. M., Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. In Fullerens, Graphenes and Nanotubes, Elsevier: 2018; pp 227-295.
45. Dong, Q.; Wang, X.; Hu, X.; Xiao, L.; Zhang, L.; Song, L.; Xu, M.; Zou, Y.; Chen, L.; Chen, Z., Simultaneous application of photothermal therapy and an anti‐inflammatory prodrug using pyrene–aspirin‐loaded gold nanorod graphitic nanocapsules. Angewandte Chemie 2018, 130 (1), 183-187.
46. Eskiizmir, G.; Ermertcan, A. T.; Yapici, K., Nanomaterials: promising structures for the management of oral cancer. In Nanostructures for oral medicine, Elsevier: 2017; pp 511-544.
47. Chen, X.; Zhu, X.; Ma, L.; Lin, A.; Gong, Y.; Yuan, G.; Liu, J., A core–shell structure QRu-PLGA-RES-DS NP nanocomposite with photothermal response-induced M2 macrophage polarization for rheumatoid arthritis therapy. Nanoscale 2019, 11 (39), 18209-18223.
48. Kim, H. J.; Lee, S.-M.; Park, K.-H.; Mun, C. H.; Park, Y.-B.; Yoo, K.-H., Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials 2015, 61, 95-102.
49. Chen, X.; Zhu, X.; Xu, T.; Xu, M.; Wen, Y.; Liu, Y.; Liu, J.; Qin, X., Targeted hexagonal Pd nanosheet combination therapy for rheumatoid arthritis via the photothermal controlled release of MTX. Journal of Materials Chemistry B 2019, 7 (1), 112-122.
50. Dou, Y.; Li, C.; Li, L.; Guo, J.; Zhang, J., Bioresponsive drug delivery systems for the treatment of inflammatory diseases. Journal of controlled release 2020, 327, 641-666.
51. Li, C.; Li, H.; Wang, Q.; Zhou, M.; Li, M.; Gong, T.; Zhang, Z.; Sun, X., pH-sensitive polymeric micelles for targeted delivery to inflamed joints. Journal of Controlled Release 2017, 246, 133-141.
52. Li, P.; Yang, X.; Yang, Y.; He, H.; Chou, C.-K.; Chen, F.; Pan, H.; Liu, L.; Cai, L.; Ma, Y., Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. Journal of controlled release 2020, 319, 87-103.
53. Fan, X.-x.; Xu, M.-z.; Leung, E. L.-H.; Jun, C.; Yuan, Z.; Liu, L., ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria. Nano-micro letters 2020, 12 (1), 1-14.
54. Maleki, S. J.; Crespo, J. F.; Cabanillas, B., Anti-inflammatory effects of flavonoids. Food chemistry 2019, 299, 125124.
55. Panche, A. N.; Diwan, A. D.; Chandra, S. R., Flavonoids: an overview. Journal of nutritional science 2016, 5, e47.
56. Wang, T.-y.; Li, Q.; Bi, K.-s., Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian journal of pharmaceutical sciences 2018, 13 (1), 12-23.
57. Latos‐Brozio, M.; Masek, A., Structure‐activity relationships analysis of monomeric and polymeric polyphenols (quercetin, rutin and catechin) obtained by various polymerization methods. Chemistry & Biodiversity 2019, 16 (12), e1900426.
58. Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C., The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10 (11), 1618.
59. Chow, S.-E.; Hshu, Y.-C.; Wang, J.-S.; Chen, J.-K., Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages. Journal of Applied Physiology 2007, 102 (4), 1520-1527.
60. Deby-Dupont, G.; Mouithys-Mickalad, A.; Serteyn, D.; Lamy, M.; Deby, C., Resveratrol and curcumin reduce the respiratory burst of Chlamydia-primed THP-1 cells. Biochemical and biophysical research communications 2005, 333 (1), 21-27.
61. Petrônio, M. S.; Zeraik, M. L.; Da Fonseca, L. M.; Ximenes, V. F., Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 2013, 18 (3), 2821-2839.
62. Shen, L.; Ji, H.-F., Insights into the inhibition of xanthine oxidase by curcumin. Bioorganic & medicinal chemistry letters 2009, 19 (21), 5990-5993.
63. Aucamp, J. P. Inhibition of Xanthine oxidase by catechins for tea (Camellia sinensis). University of Pretoria, 2007.
64. Bräunlich, M.; Slimestad, R.; Wangensteen, H.; Brede, C.; Malterud, K. E.; Barsett, H., Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients 2013, 5 (3), 663-678.
65. Huang, X. F.; Li, H. Q.; Shi, L.; Xue, J. Y.; Ruan, B. F.; Zhu, H. L., Synthesis of resveratrol analogues, and evaluation of their cytotoxic and xanthine oxidase inhibitory activities. Chemistry & Biodiversity 2008, 5 (4), 636-642.
66. Cheon, B. S.; Kim, Y. H.; Son, K. S.; Chang, H. W.; Kang, S. S.; Kim, H. P., Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Medica 2000, 66 (07), 596-600.
67. Sarkar, A.; Bhaduri, A., Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochemical and Biophysical Research Communications 2001, 284 (1), 173-178.
68. Sporn, M. B.; Liby, K. T., NRF2 and cancer: the good, the bad and the importance of context. Nature Reviews Cancer 2012, 12 (8), 564-571.
69. J Chu, A., Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued) 2014, 13 (1), 34-64.
70. Yang, G.; Chang, C.-C.; Yang, Y.; Yuan, L.; Xu, L.; Ho, C.-T.; Li, S., Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. Journal of agricultural and food chemistry 2018, 66 (49), 12953-12960.
71. ÜSTÜNDAŞ, M.; YENER, H. B.; HELVACI, Ş. Ş., Parameters affecting lycopene extraction from tomato powder and its antioxidant activity. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering 2018, 19 (2), 454-467.
72. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods 1983, 65 (1-2), 55-63.
73. Rosenkranz, A. R.; Schmaldienst, S.; Stuhlmeier, K. M.; Chen, W.; Knapp, W.; Zlabinger, G. J., A microplate assay for the detection of oxidative products using 2′, 7′-dichlorofluorescin-diacetate. Journal of immunological methods 1992, 156 (1), 39-45.
74. Kurisawa, M.; Chung, J. E.; Uyama, H.; Kobayashi, S., Laccase‐catalyzed synthesis and antioxidant property of poly (catechin). Macromolecular Bioscience 2003, 3 (12), 758-764.
75. Janeiro, P.; Brett, A. M. O., Catechin electrochemical oxidation mechanisms. Analytica chimica acta 2004, 518 (1-2), 109-115.
76. Bark, K.-M.; Yeom, J.-E.; Yang, J.-I.; Yang, I.-J.; Park, C.-H.; Park, H.-R., Spectroscopic studies on the oxidation of catechin in aqueous solution. Bulletin of the Korean Chemical Society 2011, 32 (9), 3443-3447.
77. Oliver, S.; Hook, J. M.; Boyer, C., Versatile oligomers and polymers from flavonoids–a new approach to synthesis. Polymer Chemistry 2017, 8 (15), 2317-2326.
78. Wu, Y.; Wei, H.; van der Mei, H. C.; de Vries, J.; Busscher, H. J.; Ren, Y., Inheritance of physico-chemical properties and ROS generation by carbon quantum dots derived from pyrolytically carbonized bacterial sources. Materials Today Bio 2021, 12, 100151.
79. Ma, Y.; Zhang, X.; Bai, J.; Huang, K.; Ren, L., Facile, controllable tune of blue shift or red shift of the fluorescence emission of solid-state carbon dots. Chemical Engineering Journal 2019, 374, 787-792.
80. Li, Z.; Lei, S.; Xi, J.; Ye, D.; Hu, W.; Song, L.; Hu, Y.; Cai, W.; Gui, Z., Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal. Chemical Engineering Journal 2021, 426, 129580.
81. SEPPERER, T., Purification of Industrial Tannin Extract to produce Enhanced Tannin-furanic Foams.
82. Yaneva, Z.; Ivanova, D.; Popov, N., Clinoptilolite Microparticles as Carriers of Catechin-Rich Acacia catechu Extracts: Microencapsulation and In Vitro Release Study. Molecules 2021, 26 (6), 1655.
83. Silva, C.; Simon, F.; Friedel, P.; Pötschke, P.; Zimmerer, C., Elucidating the chemistry behind the reduction of graphene oxide using a green approach with polydopamine. Nanomaterials 2019, 9 (6), 902.
84. Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K., Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 2019, 11 (35), 16571-16581.
85. Li, Y.-J.; Luo, L.-J.; Harroun, S. G.; Wei, S.-C.; Unnikrishnan, B.; Chang, H.-T.; Huang, Y.-F.; Lai, J.-Y.; Huang, C.-C., Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019, 11 (12), 5580-5594.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 發展一原位產氫系統用以減緩骨關節炎的發炎
2. 漢方中藥B307對小鼠衰竭運動引起損傷的保護作用
3. 一步法合成銅離子配位聚槲皮素複合材料應用於 耐甲氧西林金黃色葡萄球菌感染傷口的外用治療
4. 載有薑黃素之多功能脂質/PLGA複合型微米粒子與明膠支架於角膜內皮再生之應用
5. 多功能之酸鹼應答型高分子複合液胞於藥物傳遞與核磁共振應用之探討
6. 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
7. 開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統
8. 開發具磁性與酸鹼應答性複合高分子液胞作為腫瘤標的藥物傳遞及MR影像顯影之診斷治療奈米平台
9. 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
10. 裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估
11. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
12. 利用腫瘤趨向性單核球對腫瘤缺氧區域傳遞裝載超順磁奈米氧化鐵/Chlorin e6的高分子含氧氣胞用以改善磁熱及光動力治療的療效
13. 開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療
14. 利用腫瘤趨向性脂肪幹細胞攜帶智慧型奈米微粒對膠質母細胞瘤進行靶向傳遞及化學治療
15. 具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
 
* *