帳號:guest(3.144.83.48)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許績騰
作者(外文):Syu, Ji-Teng
論文名稱(中文):鍍覆於鋯四合金之氮化鋯薄膜對於抵抗陰極充氫法之影響
論文名稱(外文):Effect of Zirconium Nitride Thin Films Deposited Zircaloy-4 on Resistance to Cathodic Hydrogen Charging
指導教授(中文):藍貫哲
指導教授(外文):Lan, Kuan-Che
口試委員(中文):黃嘉宏
董曉明
口試委員(外文):Huang, Jia-Hong
Tung, Hsiao-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011576
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:77
中文關鍵詞:陰極充氫法鋯合金PVD鍍膜動態極化掃描真空熱處理
外文關鍵詞:HydrogenZirconiumPVDElectrochemistryCharging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:308
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的是討論中空陰極離子鍍著(HCD-IP)系統和非平衡磁控濺鍍(UBMS)系統鍍著之氮化鋯薄膜對於抵抗充氫的能力。首先,使用兩種鍍膜系統鍍著氮化鋯薄膜於與鋯四合金上,接著分別將鍍膜樣品與作為對照組的無鍍膜樣品在65℃的1 M的硫酸水溶液中施以-120 mA/cm2電流進行陰極充氫法48小時,在此期間氫氣會擴散進去與鋯四合金反應生成氫化鋯,由X光繞射圖顯示,無鍍膜與UBMS系統鍍著氮化鋯的鋯四樣品均有ZrH1.66相產生,但HCD-IP系統鍍著氮化鋯的鋯四樣品仍只有α-Zr相。使用氫化鋯選擇性蝕刻液對樣品橫截面蝕刻後,觀察到對照組與UBMS系統鍍著氮化鋯的鋯四樣品均有產生表面氫化鋯層被蝕刻後的形貌,氫化鋯層厚度分別為有9 μm和6 μm ,而HCD-IP系統鍍著氮化鋯的鋯四樣品僅有觀察到氫化鋯條零星分佈,接著對充氫完畢的樣品進行均質化熱處理,獲得氫化鋯均勻分布基材內部的鋯四樣品,以氫分析儀分析後得到對照組、UBMS系統鍍著氮化鋯的鋯四樣品和HCD-IP系統鍍著氮化鋯的鋯四樣品氫含量分別為271 ± 19 ppm、212 ± 17 ppm 和 36 ± 5 ppm;從此結果了解到兩系統鍍膜樣品針對氫進入阻隔能力有明顯的差異,造成該差異的主要原因推測是兩系統在鍍著氮化鋯薄膜時離化率的不同,產生的離子轟擊效應造成氮化鋯薄膜層有不同的點缺陷密度,而點缺陷作為氫陷阱捕捉的氫含量不同造成的。
The purpose of this study is to discuss the ability to resist hydrogen charging of zirconium nitride films plated by the hollow cathode ion plating (HCD-IP) system and the unbalanced magnetron sputtering (UBMS) system. First, zirconium nitride films were deposited on Zircaloy-4 substrate using hollow cathode ion plating (HCD-IP) system and unbalanced magnetron sputtering (UBMS) system, and then the coated samples and the uncoated sample as a control group were subjected to cathodic hydrogen charging in 1 M sulfuric acid solution, solution temperature 65°C with a current of -120 mA/cm2 for 48 hours. Hydrogen diffused in and react with the Zircaloy-4 to precipitate zirconium hydride. The X-ray diffraction pattern shows that the uncoated samples and zirconium nitride coated sample by UBMS system all have ZrH1.66 phase, but the coated sample by HCD-IP system didn't and it still only has α-Zr phase. After etching the cross-section of the samples with the selective zirconium etching solution, it was observed that both the control group and the coated samples by UBMS system has a morphology of etched zirconium hydride layer, and the thickness of the zirconium hydride layer was 9 μm and 6 μm, respectively. The coated samples by HCD-IP system were only observed to have scattered zirconium hydride strips. Then the sample is homogenized by heat treatment after hydrogen charging. The zirconium tetra samples with uniform distribution of zirconium nitride inside the substrate were obtained. The hydrogen content analysis of the control group, the coated sample by UBMS and HCD-IP systems were 271 ± 19 ppm, 212 ± 17 ppm and 36 ± 5 ppm, respectively. From this result, it is understood that the coating samples of the two systems have obvious differences in the barrier ability of hydrogen entry. The main reason for this difference is presumed to be the difference in the ionization rate of the two systems when they are coated with zirconium nitride films. The ion peening effect causes the zirconium nitride film layer to have different point defect densities. The point defects are caused by the difference in the amount of hydrogen captured by the hydrogen traps.
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 ix
表目錄 xi
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1 鋯的晶體結構 3
2.2 氫對鋯合金的影響 3
2.2.1 氫化鋯的特性 3
2.2.2 氫化物對於鋯合金機械性質影響 5
2.3 充氫技術 6
2.3.1 陰極充氫法 7
2.3.2 均質化熱處理 9
2.4 鍍膜技術以及氮化鋯薄膜性質 10
2.4.1 非平衡磁控濺鍍系統 (UBMS) 10
2.4.2 中空陰極離子鍍著系統 (HCD-IP) 11
2.4.3 氮化鋯薄膜 12
Chapter 3 實驗原理與方法 14
3.1 樣品製備 14
3.2 鍍膜程序 15
3.3 鋯四合金充氫 19
3.3.1 充氫樣品製備 19
3.3.2 陰極充氫法 20
3.3.3 均質化熱處理 21
3.4 充氫處理前後鋯四合金的極圖 23
3.5 特性 23
3.5.1 X光繞射儀(XRD) 23
3.5.2 場發射型掃描式電子顯微鏡 (FEG-SEM) 24
3.5.3 X光光電子能譜儀 (XPS) 24
3.5.4 聚焦離子束顯微鏡 (FIB) 25
3.6 性質 25
3.6.1 電阻率 25
3.6.2 硬度與楊氏膜數 26
3.6.3 殘餘應力 26
3.7 充氫樣品氫量測與表面形貌 27
3.7.1 氫分析儀 27
3.7.2 氫化鋯微結構觀察 27
Chapter 4 結果 29
4.1 預充氫樣品的結構 29
4.2 結構與成分 33
4.2.1 X光繞射與低掠角X光繞射 35
4.2.2 掃描式電子顯微鏡與聚焦離子束顯微鏡 38
4.2.3 X光光電子能譜儀 39
4.3 性質 40
4.3.1 電阻率 40
4.3.2 硬度和楊氏膜數 40
4.3.3 殘餘應力 41
4.4 充氫試片氫含量分析 42
4.4.1 氫化鋯層厚度 42
4.4.2 氫化鋯表面形貌 43
4.4.3 氫分析 46
Chapter 5 討論 48
5.1 預鍍著的ZrN薄膜性質 48
5.1.1 HCD-IP系統與UBMS系統薄膜性質差異 48
5.2 陰極充氫法對鋯合金樣品的影響 48
5.2.1 未鍍膜對照樣品 48
5.2.2 HCD-IP系統製備氮化鋯薄膜ZBxx 和ZCxx 系列樣品 49
5.2.3 UBMS系統製備氮化鋯薄膜樣品ZUH0 系列樣品 51
5.2.4 薄膜抵抗充氫機制 54
5.3 含氫量預測 56
Chapter 6 結論 58
References 59
附錄一 各氫含量對應的氫化表面形貌 65
附錄二 二次離子質譜分析儀(SIMS)縱深成分分析 68
附錄三 熱處理時間 70
附錄四 預充氫含量對於鋯四合金在室溫硫酸與鹽水環境中之腐蝕行為影響 73

[1] D. Khatamian, Z. L. Pan, M. P. Puls, C. D. Cann, Hydrogen solubility limits in Excel, an experimental zirconium-based alloy, Journal of Alloys and Compounds. 231 (1995) 488–493.
[2] M. A. McKinnon, M. E. Cunningham, Dry storage demonstration for high-burnup spent nuclear fuel-feasibility study, Pacific Northwest National Laboratory, 2003.
[3] B. Cox, P. Rudling, Hydriding mechanisms and impact on fuel performance, ZIRAT Special Topical Report on Hydriding. Sweden: Advanced Nuclear Technology, 2000.
[4] T. R. Allen, R. J. M. Konings, A. T. Motta, 5.03 corrosion of zirconium alloys, Comprehensive Nuclear Materials. 5 (2012) 49–68.
[5] D. B. Rigby, Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel: executive summary, US Nuclear Waste Technical Review Board, 2010.
[6] I. A. E. Agency, I. A. E. Agency, Delayed hydride cracking of zirconium alloy fuel cladding, International Atomic Energy Agency, 2010.
[7] R. E. Einziger, H. C. Tsai, M. C. Billone, B. A. Hilton, Examination of spent PWR fuel rods after 15 years in dry storage, International Conference on Nuclear Engineering, (2002) 351–358.
[8] I. A. E. Agency, Waterside corrosion of zirconium alloys in nuclear power plants, International Atomic Energy Agency, 1998.
[9] J. Matějíček, J. Veverka, V. Nemanič, L. Cvrček, F. Lukáč, V. Havranek, K. Illkova, Characterization of less common nitrides as potential permeation barriers, Fusion Engineering and Design. 139 (2019) 74–80.
[10] C. A. Flanagan, D. Steiner, G. E. Smith, Fusion engineering device design description, Oak Ridge National Laboratory, 1981.
[11] B. Zajec, Hydrogen permeation barrier–recognition of defective barrier film from transient permeation rate, Int J Hydrogen Energy. 36 (2011) 7353–7361.
[12] ASM, Metal Handbook, Vol. 2, ninth ed., ASM International, Materials Park, 1988.
[13] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Handbook of Chemistry and Physics. (2010) 12–204.
[14] J. R. Lamarsh, A. J. Baratta, Introduction to nuclear engineering, Prentice hall, New Jersey 2001.
[15] D. Khatamian, Z. L. Pan, M. P. Puls, C. D. Cann, Hydrogen solubility limits in Excel, An experimental zirconium-based alloy, ELSEVIER, 1995.
[16] C. L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design, Oak Ridge National Laboratory for the US Atomic Energy Commission, 1962.
[17] K. W. Song, Y. H. Jeong, K. S. Kim, J. G. Bang, T. H. Chun, H. K. Kim, High burnup fuel technology in Korea, Nuclear Engineering and Technology. 40 (2008) 21.
[18] B352/B352M-17, Standard Specification for Zirconium and Zirconium Alloy Sheet, Strip, and Plate for Nuclear Application, ASTM International, 2021.
[19] M. P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium, Alloy Components, 2012.
[20] E. Zuzek, J. P. Abriata, A. San-Martin, F. D. Manchester, The H-Zr (hydrogen-zirconium) system, Bulletin of Alloy Phase Diagrams. 11 (1990) 385–395.
[21] D. Khatamian, V. C. Ling, Hydrogen solubility limits in α-and β-zirconium, Journal of Alloys and Compounds. 253 (1997) 162–166.
[22] D. Khatamian, Effect of β-Zr decomposition on the solubility limits for H in Zr–2.5 Nb, Journal of Alloys and Compounds. 356 (2003) 22–26.
[23] D. Khatamian, Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry, Journal of Alloys and Compounds. 293 (1999) 893–899.
[24] E. Zuzek, J. P. Abriata, A. San-Martin, F. D. Manchester, The H-Zr (hydrogen-zirconium) system, Bulletin of Alloy Phase Diagrams. 11 (1990) 385–395.
[25] J. S. Bradbrook, G. W. Lorimer, N. Ridley, The precipitation of zirconium hydride in zirconium and zircaloy-2, Journal of Nuclear Materials. 42 (1972) 142–160.
[26] M. P. Puls, The effect of hydrogen and hydrides on the integrity of zirconium alloy components: delayed hydride cracking, Springer Science & Business Media, 2012.
[27] W. M. Small, J. H. Root, D. Khatamian, Observation of kinetics of γ zirconium hydride formation in Zr–2.5 Nb by neutron diffraction, Journal of Nuclear Materials. 256 (1998) 102–107.
[28] Z. L. Pan, I. G. Ritchie, M. P. Puls, The terminal solid solubility of hydrogen and deuterium in Zr-2.5 Nb alloys, Journal of Nuclear Materials. 228 (1996) 227–237.
[29] J. Blomqvist, J. Olofsson, A. M. Alvarez, C. Bjerkén, Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle, 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. (2012) 671–679.
[30] J. J. Zuckerman, Inorganic Reactions and Methods, John Wiley & Sons Inc, 2009.
[31] P. F. Weck, E. Kim, V. Tikare, J. A. Mitchell, Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory, Dalton Transactions. 44 (2015) 18769–18779.
[32] M. P. Puls, S. Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, Journal of Nuclear Materials. 336 (2005) 73–80.
[33] S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, T. Matsuda, S. Kobayashi, Thermal and mechanical properties of zirconium hydride, Journal of Alloys and Compounds. 293 (1999) 23–29.
[34] K. B. Colas, A. T. Motta, M. R. Daymond, M. Kerr, J. D. Almer, Hydride platelet reorientation in zircaloy studied with synchrotron radiation diffraction, ASTM International. 8 (2010) 1–17.
[35] D. B. Rigby, Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel: executive summary, US Nuclear Waste Technical Review Board, 2010.
[36] Z. Xu, M. S. Kazimi, M. J. Driscoll, Impact of high burnup on PWR spent fuel characteristics, Nuclear Science and Engineering. 151 (2005) 261–273.
[37] R. N. Singh, R. Kishore, S. S. Singh, T.K. Sinha, B. P. Kashyap, Stress-reorientation of hydrides and hydride embrittlement of Zr–2.5 wt% Nb pressure tube alloy, Journal of Nuclear Materials. 325 (2004) 26–33.
[38] H. M. Tung, T. C. Chen, C. C. Tseng, Effects of hydrogen contents on the mechanical properties of Zircaloy-4 sheets, Materials Science and Engineering: A. 659 (2016) 172–178.
[39] M. Billone, Y. Yan, T. Burtseva, R. Daum, Cladding embrittlement during postulated loss-of-coolant accidents., Argonne National Laboratory, 2008.
[40] D. B. Rigby, Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel: executive summary, US Nuclear Waste Technical Review Board, 2010.
[41] D. O. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, International Metals Reviews. 28 (1983) 92–121.
[42] I. A. E. Agency, Waterside corrosion of zirconium alloys in nuclear power plants, International Atomic Energy Agency, 1998.
[43] E. D. Hindle, The influence of processing variables on the grain structure and hydride orientation in Zircaloy-2 tubing, Journal of the Institute of Metals 94 (1966) 245.
[44] Y. Liu, Q. Peng, W. Zhao, H. Jiang, Hydride precipitation by cathodic hydrogen charging method in zirconium alloys, Materials Chemistry and Physics. 110 (2008) 56–60.
[45] A. D. Lepage, W. A. Ferris, G. A. Ledoux, Procedure for adding hydrogen to small sections of zirconium alloys, Materials and Mechanics Branch, Chalk River Laboratories, Chalk River, Ontario. (1998) 12–13.
[46] M. A. Martín-Rengel, F. J. G. Sánchez, J. Ruiz-Hervías, L. Caballero, A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, Journal of Nuclear Materials. 429 (2012) 276–283.
[47] J. Wei, P. Frankel, M. Blat, A. Ambard, R. J. Comstock, L. Hallstadius, S. Lyon, R.A. Cottis, M. Preuss, Autoclave study of zirconium alloys with and without hydride rim, Corrosion Engineering, Science and Technology. 47 (2012) 516–528.
[48] R. N. Iyer, H. W. Pickering, M. Zamanzadeh, A mechanistic analysis of hydrogen entry into metals during cathodic hydrogen charging, Pennsylvania state university park dept of materials science and engineering, 1988.
[49] H. W. Pickering, A review of the mechanism and kinetics of electrochemical hydrogen entry and degradation of metallic systems, Materials Science, (1990).
[50] R. N. Iyer, H. W. Pickering, M. Zamanzadeh, Analysis of hydrogen evolution and entry into metals for the discharge‐recombination process, Journal of the Electrochemical Society. 136 (1989) 2463.
[51] M. Au, High temperature electrochemical charging of hydrogen and its application in hydrogen embrittlement research, Materials Science and Engineering: A. 454 (2007) 564–569.
[52] N. Ehrlin, C. Bjerké, M. Fisk, Cathodic hydrogen charging of Inconel 718, Materials Science, Engineering. (2016) 1350-1364.
[53] D. Khatamian, DSC “peak temperature” versus “maximum slope temperature” in determining TSSD temperature, Journal of Nuclear Materials. 405 (2010) 171–176.
[54] E. D. Hindle, The influence of processing variables on the grain structure and hydride orientation in Zircaloy-2 tubing, Journal of the Institute of Metals. 94 (1966) 245.
[55] A. D. Lepage, W. A. Ferris, G. A. Ledoux, Procedure for adding hydrogen to small sections of zirconium alloys, Materials and Mechanics Branch, Chalk River Laboratories, Chalk River, Ontario. (1998) 12–13.
[56] D. Khatamian, DSC “peak temperature” versus “maximum slope temperature” in determining TSSD temperature, Journal of Nuclear Materials. 405 (2010) 171–176.
[57] J. J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4, Journal of Nuclear Materials. 43 (1972) 330–338.
[58] J. S. Bradbrook, G. W. Lorimer, N. Ridley, The precipitation of zirconium hydride in zirconium and zircaloy-2, Journal of Nuclear Materials. 42 (1972) 142–160.
[59] J. J. Kearns, Dissolution kinetics of hydride platelets in Zircaloy-4, Journal of Nuclear Materials. 27 (1968) 64–72.
[60] A. D. Lepage, W. A. Ferris, G. A. Ledoux, Procedure for adding hydrogen to small sections of zirconium alloys, Materials and Mechanics Branch, Chalk River Laboratories, Chalk River, Ontario. (1998) 12–13.
[61] W. Ensinger, A. Schröer, G. K. Wolf, A comparison of IBAD films for wear and corrosion protection with other PVD coatings, Nuclear Instruments and Methods in Physics Research B. 80 (1993) 445–454.
[62] P. J. Kelly, R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum. 56 (2000) 159–172.
[63] R.A. Dugdale, The application of the glow discharge to material processing, Journal of Materials Science. 1 (1966) 160–169.
[64] W. J. Chou, G. P. Yu, J. H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surface and Coatings Technology. 149 (2002) 7–13.
[65] U. K. Wiiala, I. M. Penttinen, A. S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surface and Coatings Technology. 41 (1990) 191–204.
[66] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surface and Coatings Technology. 112 (1999) 108–113.
[67] L. Krusin-Elbaum, M. Wittmer, C. Y. Ting, J. J. Cuomo, ZrN diffusion barrier in aluminum metallization schemes, MRS Online Proceedings Library. 18 (1982).
[68] L. Krusin-Elbaum, M. Wittmer, Oxidation kinetics of ZrN thin films, Thin Solid Films. 107 (1983) 111–116.
[69] J. Matějíček, J. Veverka, V. Nemanič, L. Cvrček, F. Lukáč, V. Havránek, K. Illková, Characterization of less common nitrides as potential permeation barriers, Fusion Engineering and Design. 139 (2019) 74–80.
[70] M. M. S. Sirajuddeen, I. B. S. Banu, FP-LAPW investigation of electronic, magnetic, elastic and thermal properties of Fe-doped zirconium nitride, AIP Advances. 4 (2014) 057121.
[71] J. Musil, I. Štěpánek, J. Musil Jr, M. Kolego, O. Blahova, J. Vyskočil, J. Kasl, Properties of TiN, ZrN and ZrTiN coatings prepared by cathodic arc evaporation, Materials Science and Engineering: A. 163 (1993) 211–214.
[72] J. E. Hove, W. C. Riley, Modern Ceramics: Some Principles and Concepts, John Wiley & Sons, 1965.
[73] L. Toth, Transition metal carbides and nitrides, Elsevier, 2014.
[74] W. S. Williams, Transition-metal carbides, Progress in Solid State Chemistry. 6 (1971) 57–118.
[75] A. J. Perry, A contribution to the study of poisson’s ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films. 193 (1990) 463–471.
[76] C. C. Wang, S. A. Akbar, W. Chen, V. D. Patton, Electrical properties of high-temperature oxides, borides, carbides, and nitrides, Journal of Materials Science. 30 (1995) 1627–1641.
[77] P. J. P. Jin, S. M. S. Maruno, Stress relaxation in reactively sputter-deposited TiOxNy films, Japanese Journal of Applied Physics. 30 (1991) 2058.
[78] K. L. Kuo, J. H. Huang, The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Annealed in Vacuum, National Tsing Hua University, 2015.
[79] H. Topsoe, Geometric factors in four point resistivity measurement, Bulletin. 472 (1968) 63.
[80] A. N. Wang, J. H. Huang, H. W. Hsiao, G. P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surface and Coatings Technology. 280 (2015) 43–49.
[81] C. H. Ma, J. H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films. 418 (2002) 73–78.
[82] R. A. Serway, J. W. Jewett, Principles of physics, Saunders College Pub. Fort Worth, 1998.
[83] T. Broom, Lattice defects and the electrical resistivity of metals, Advances in Physics. 3 (1954) 26–83.
[84] K. C. Lan, C. P. Chuang, H. M. Tung, K. Mo, Y. Miao, X. Liu, H. Lee, J. S. Park, J. Almer, J. F. Stubbins, A study on texture stability and the biaxial creep behavior of as-hydrided CWSR Zircaloy-4 cladding at the effective stresses from 55 MPa to 65 MPa and temperatures from 300 °C to 400 °C, Journal of Nuclear Materials. 564 (2022) 153688.
[85] A. Zieliński, A. Cymann, A. Gumiński, A. Hernik, G. Gajowiec, Influence of High Temperature Oxidation on Hydrogen Absorption and Degradation of Zircaloy-2 and Zr 700 Alloys, High Temperature Materials and Processes. 38 (2019) 8–15.
[86] R. Koyama, I. Goroh, Hydrogen emission at grain boundaries in tensile-deformed Al-9% Mg alloy by hydrogen microprint technique, Transactions of Nonferrous Metals Society of China. 24 (2014) 2102–2106.
[87] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Materialia. 60 (2012) 6814–6828.
[88] N. Yazdipour, D. P. Dunne, E. Pereloma, Effect of grain size on the hydrogen diffusion process in steel using cellular automaton approach, in: Materials Science Forum, Trans Tech Publications, (2012) 1568–1573.
[89] G. A. Young, J. R. Scully, The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy, Metallurgical and Materials Transactions A. 33 (2002) 1167–1181.
[90] S. Osaki, D. Itoh, M. Nakai, SCC properties of 7050 series aluminum alloys in T6 and RRA tempers, Keikinzoku. 51 (2001) 222–227.
[91] S. K. Lee, H. S. Kim, S. J. Noh, J. H. Han, Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800. deg. C for fusion reactor applications, Journal of the Korean Physical Society. 59 (2011) 3019–3023.
[92] C. San Marchi, B. P. Somerday, S. L. Robinson, Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures, International Journal of Hydrogen Energy. 32 (2007) 100–116.
[93] G. W. Hollenberg, E. P. Simonen, G. Kalinin, A. Terlain, Tritium/hydrogen barrier development, Fusion Engineering and Design. 28 (1995) 190–208.
[94] R. Checchetto, M. Bonelli, L. M. Gratton, A. Miotello, A. Sabbioni, L. Guzman, Y. Horino, G. Benamati, Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel, Surface and Coatings Technology. 83 (1996) 40–44.
[95] J. Yamabe, S. Matsuoka, Y. Murakami, Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment, International Journal of Hydrogen Energy. 38 (2013) 10141–10154.

(此全文20251016後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *