|
[1] D. Khatamian, Z. L. Pan, M. P. Puls, C. D. Cann, Hydrogen solubility limits in Excel, an experimental zirconium-based alloy, Journal of Alloys and Compounds. 231 (1995) 488–493. [2] M. A. McKinnon, M. E. Cunningham, Dry storage demonstration for high-burnup spent nuclear fuel-feasibility study, Pacific Northwest National Laboratory, 2003. [3] B. Cox, P. Rudling, Hydriding mechanisms and impact on fuel performance, ZIRAT Special Topical Report on Hydriding. Sweden: Advanced Nuclear Technology, 2000. [4] T. R. Allen, R. J. M. Konings, A. T. Motta, 5.03 corrosion of zirconium alloys, Comprehensive Nuclear Materials. 5 (2012) 49–68. [5] D. B. Rigby, Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel: executive summary, US Nuclear Waste Technical Review Board, 2010. [6] I. A. E. Agency, I. A. E. Agency, Delayed hydride cracking of zirconium alloy fuel cladding, International Atomic Energy Agency, 2010. [7] R. E. Einziger, H. C. Tsai, M. C. Billone, B. A. Hilton, Examination of spent PWR fuel rods after 15 years in dry storage, International Conference on Nuclear Engineering, (2002) 351–358. [8] I. A. E. Agency, Waterside corrosion of zirconium alloys in nuclear power plants, International Atomic Energy Agency, 1998. [9] J. Matějíček, J. Veverka, V. Nemanič, L. Cvrček, F. Lukáč, V. Havranek, K. Illkova, Characterization of less common nitrides as potential permeation barriers, Fusion Engineering and Design. 139 (2019) 74–80. [10] C. A. Flanagan, D. Steiner, G. E. Smith, Fusion engineering device design description, Oak Ridge National Laboratory, 1981. [11] B. Zajec, Hydrogen permeation barrier–recognition of defective barrier film from transient permeation rate, Int J Hydrogen Energy. 36 (2011) 7353–7361. [12] ASM, Metal Handbook, Vol. 2, ninth ed., ASM International, Materials Park, 1988. [13] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Handbook of Chemistry and Physics. (2010) 12–204. [14] J. R. Lamarsh, A. J. Baratta, Introduction to nuclear engineering, Prentice hall, New Jersey 2001. [15] D. Khatamian, Z. L. Pan, M. P. Puls, C. D. Cann, Hydrogen solubility limits in Excel, An experimental zirconium-based alloy, ELSEVIER, 1995. [16] C. L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design, Oak Ridge National Laboratory for the US Atomic Energy Commission, 1962. [17] K. W. Song, Y. H. Jeong, K. S. Kim, J. G. Bang, T. H. Chun, H. K. Kim, High burnup fuel technology in Korea, Nuclear Engineering and Technology. 40 (2008) 21. [18] B352/B352M-17, Standard Specification for Zirconium and Zirconium Alloy Sheet, Strip, and Plate for Nuclear Application, ASTM International, 2021. [19] M. P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium, Alloy Components, 2012. [20] E. Zuzek, J. P. Abriata, A. San-Martin, F. D. Manchester, The H-Zr (hydrogen-zirconium) system, Bulletin of Alloy Phase Diagrams. 11 (1990) 385–395. [21] D. Khatamian, V. C. Ling, Hydrogen solubility limits in α-and β-zirconium, Journal of Alloys and Compounds. 253 (1997) 162–166. [22] D. Khatamian, Effect of β-Zr decomposition on the solubility limits for H in Zr–2.5 Nb, Journal of Alloys and Compounds. 356 (2003) 22–26. [23] D. Khatamian, Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry, Journal of Alloys and Compounds. 293 (1999) 893–899. [24] E. Zuzek, J. P. Abriata, A. San-Martin, F. D. Manchester, The H-Zr (hydrogen-zirconium) system, Bulletin of Alloy Phase Diagrams. 11 (1990) 385–395. [25] J. S. Bradbrook, G. W. Lorimer, N. Ridley, The precipitation of zirconium hydride in zirconium and zircaloy-2, Journal of Nuclear Materials. 42 (1972) 142–160. [26] M. P. Puls, The effect of hydrogen and hydrides on the integrity of zirconium alloy components: delayed hydride cracking, Springer Science & Business Media, 2012. [27] W. M. Small, J. H. Root, D. Khatamian, Observation of kinetics of γ zirconium hydride formation in Zr–2.5 Nb by neutron diffraction, Journal of Nuclear Materials. 256 (1998) 102–107. [28] Z. L. Pan, I. G. Ritchie, M. P. Puls, The terminal solid solubility of hydrogen and deuterium in Zr-2.5 Nb alloys, Journal of Nuclear Materials. 228 (1996) 227–237. [29] J. Blomqvist, J. Olofsson, A. M. Alvarez, C. Bjerkén, Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle, 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. (2012) 671–679. [30] J. J. Zuckerman, Inorganic Reactions and Methods, John Wiley & Sons Inc, 2009. [31] P. F. Weck, E. Kim, V. Tikare, J. A. Mitchell, Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory, Dalton Transactions. 44 (2015) 18769–18779. [32] M. P. Puls, S. Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, Journal of Nuclear Materials. 336 (2005) 73–80. [33] S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, T. Matsuda, S. Kobayashi, Thermal and mechanical properties of zirconium hydride, Journal of Alloys and Compounds. 293 (1999) 23–29. [34] K. B. Colas, A. T. Motta, M. R. Daymond, M. Kerr, J. D. Almer, Hydride platelet reorientation in zircaloy studied with synchrotron radiation diffraction, ASTM International. 8 (2010) 1–17. [35] D. B. Rigby, Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel: executive summary, US Nuclear Waste Technical Review Board, 2010. [36] Z. Xu, M. S. Kazimi, M. J. Driscoll, Impact of high burnup on PWR spent fuel characteristics, Nuclear Science and Engineering. 151 (2005) 261–273. [37] R. N. Singh, R. Kishore, S. S. Singh, T.K. Sinha, B. P. Kashyap, Stress-reorientation of hydrides and hydride embrittlement of Zr–2.5 wt% Nb pressure tube alloy, Journal of Nuclear Materials. 325 (2004) 26–33. [38] H. M. Tung, T. C. Chen, C. C. Tseng, Effects of hydrogen contents on the mechanical properties of Zircaloy-4 sheets, Materials Science and Engineering: A. 659 (2016) 172–178. [39] M. Billone, Y. Yan, T. Burtseva, R. Daum, Cladding embrittlement during postulated loss-of-coolant accidents., Argonne National Laboratory, 2008. [40] D. B. Rigby, Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel: executive summary, US Nuclear Waste Technical Review Board, 2010. [41] D. O. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, International Metals Reviews. 28 (1983) 92–121. [42] I. A. E. Agency, Waterside corrosion of zirconium alloys in nuclear power plants, International Atomic Energy Agency, 1998. [43] E. D. Hindle, The influence of processing variables on the grain structure and hydride orientation in Zircaloy-2 tubing, Journal of the Institute of Metals 94 (1966) 245. [44] Y. Liu, Q. Peng, W. Zhao, H. Jiang, Hydride precipitation by cathodic hydrogen charging method in zirconium alloys, Materials Chemistry and Physics. 110 (2008) 56–60. [45] A. D. Lepage, W. A. Ferris, G. A. Ledoux, Procedure for adding hydrogen to small sections of zirconium alloys, Materials and Mechanics Branch, Chalk River Laboratories, Chalk River, Ontario. (1998) 12–13. [46] M. A. Martín-Rengel, F. J. G. Sánchez, J. Ruiz-Hervías, L. Caballero, A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, Journal of Nuclear Materials. 429 (2012) 276–283. [47] J. Wei, P. Frankel, M. Blat, A. Ambard, R. J. Comstock, L. Hallstadius, S. Lyon, R.A. Cottis, M. Preuss, Autoclave study of zirconium alloys with and without hydride rim, Corrosion Engineering, Science and Technology. 47 (2012) 516–528. [48] R. N. Iyer, H. W. Pickering, M. Zamanzadeh, A mechanistic analysis of hydrogen entry into metals during cathodic hydrogen charging, Pennsylvania state university park dept of materials science and engineering, 1988. [49] H. W. Pickering, A review of the mechanism and kinetics of electrochemical hydrogen entry and degradation of metallic systems, Materials Science, (1990). [50] R. N. Iyer, H. W. Pickering, M. Zamanzadeh, Analysis of hydrogen evolution and entry into metals for the discharge‐recombination process, Journal of the Electrochemical Society. 136 (1989) 2463. [51] M. Au, High temperature electrochemical charging of hydrogen and its application in hydrogen embrittlement research, Materials Science and Engineering: A. 454 (2007) 564–569. [52] N. Ehrlin, C. Bjerké, M. Fisk, Cathodic hydrogen charging of Inconel 718, Materials Science, Engineering. (2016) 1350-1364. [53] D. Khatamian, DSC “peak temperature” versus “maximum slope temperature” in determining TSSD temperature, Journal of Nuclear Materials. 405 (2010) 171–176. [54] E. D. Hindle, The influence of processing variables on the grain structure and hydride orientation in Zircaloy-2 tubing, Journal of the Institute of Metals. 94 (1966) 245. [55] A. D. Lepage, W. A. Ferris, G. A. Ledoux, Procedure for adding hydrogen to small sections of zirconium alloys, Materials and Mechanics Branch, Chalk River Laboratories, Chalk River, Ontario. (1998) 12–13. [56] D. Khatamian, DSC “peak temperature” versus “maximum slope temperature” in determining TSSD temperature, Journal of Nuclear Materials. 405 (2010) 171–176. [57] J. J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4, Journal of Nuclear Materials. 43 (1972) 330–338. [58] J. S. Bradbrook, G. W. Lorimer, N. Ridley, The precipitation of zirconium hydride in zirconium and zircaloy-2, Journal of Nuclear Materials. 42 (1972) 142–160. [59] J. J. Kearns, Dissolution kinetics of hydride platelets in Zircaloy-4, Journal of Nuclear Materials. 27 (1968) 64–72. [60] A. D. Lepage, W. A. Ferris, G. A. Ledoux, Procedure for adding hydrogen to small sections of zirconium alloys, Materials and Mechanics Branch, Chalk River Laboratories, Chalk River, Ontario. (1998) 12–13. [61] W. Ensinger, A. Schröer, G. K. Wolf, A comparison of IBAD films for wear and corrosion protection with other PVD coatings, Nuclear Instruments and Methods in Physics Research B. 80 (1993) 445–454. [62] P. J. Kelly, R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum. 56 (2000) 159–172. [63] R.A. Dugdale, The application of the glow discharge to material processing, Journal of Materials Science. 1 (1966) 160–169. [64] W. J. Chou, G. P. Yu, J. H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surface and Coatings Technology. 149 (2002) 7–13. [65] U. K. Wiiala, I. M. Penttinen, A. S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surface and Coatings Technology. 41 (1990) 191–204. [66] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surface and Coatings Technology. 112 (1999) 108–113. [67] L. Krusin-Elbaum, M. Wittmer, C. Y. Ting, J. J. Cuomo, ZrN diffusion barrier in aluminum metallization schemes, MRS Online Proceedings Library. 18 (1982). [68] L. Krusin-Elbaum, M. Wittmer, Oxidation kinetics of ZrN thin films, Thin Solid Films. 107 (1983) 111–116. [69] J. Matějíček, J. Veverka, V. Nemanič, L. Cvrček, F. Lukáč, V. Havránek, K. Illková, Characterization of less common nitrides as potential permeation barriers, Fusion Engineering and Design. 139 (2019) 74–80. [70] M. M. S. Sirajuddeen, I. B. S. Banu, FP-LAPW investigation of electronic, magnetic, elastic and thermal properties of Fe-doped zirconium nitride, AIP Advances. 4 (2014) 057121. [71] J. Musil, I. Štěpánek, J. Musil Jr, M. Kolego, O. Blahova, J. Vyskočil, J. Kasl, Properties of TiN, ZrN and ZrTiN coatings prepared by cathodic arc evaporation, Materials Science and Engineering: A. 163 (1993) 211–214. [72] J. E. Hove, W. C. Riley, Modern Ceramics: Some Principles and Concepts, John Wiley & Sons, 1965. [73] L. Toth, Transition metal carbides and nitrides, Elsevier, 2014. [74] W. S. Williams, Transition-metal carbides, Progress in Solid State Chemistry. 6 (1971) 57–118. [75] A. J. Perry, A contribution to the study of poisson’s ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films. 193 (1990) 463–471. [76] C. C. Wang, S. A. Akbar, W. Chen, V. D. Patton, Electrical properties of high-temperature oxides, borides, carbides, and nitrides, Journal of Materials Science. 30 (1995) 1627–1641. [77] P. J. P. Jin, S. M. S. Maruno, Stress relaxation in reactively sputter-deposited TiOxNy films, Japanese Journal of Applied Physics. 30 (1991) 2058. [78] K. L. Kuo, J. H. Huang, The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Annealed in Vacuum, National Tsing Hua University, 2015. [79] H. Topsoe, Geometric factors in four point resistivity measurement, Bulletin. 472 (1968) 63. [80] A. N. Wang, J. H. Huang, H. W. Hsiao, G. P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surface and Coatings Technology. 280 (2015) 43–49. [81] C. H. Ma, J. H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films. 418 (2002) 73–78. [82] R. A. Serway, J. W. Jewett, Principles of physics, Saunders College Pub. Fort Worth, 1998. [83] T. Broom, Lattice defects and the electrical resistivity of metals, Advances in Physics. 3 (1954) 26–83. [84] K. C. Lan, C. P. Chuang, H. M. Tung, K. Mo, Y. Miao, X. Liu, H. Lee, J. S. Park, J. Almer, J. F. Stubbins, A study on texture stability and the biaxial creep behavior of as-hydrided CWSR Zircaloy-4 cladding at the effective stresses from 55 MPa to 65 MPa and temperatures from 300 °C to 400 °C, Journal of Nuclear Materials. 564 (2022) 153688. [85] A. Zieliński, A. Cymann, A. Gumiński, A. Hernik, G. Gajowiec, Influence of High Temperature Oxidation on Hydrogen Absorption and Degradation of Zircaloy-2 and Zr 700 Alloys, High Temperature Materials and Processes. 38 (2019) 8–15. [86] R. Koyama, I. Goroh, Hydrogen emission at grain boundaries in tensile-deformed Al-9% Mg alloy by hydrogen microprint technique, Transactions of Nonferrous Metals Society of China. 24 (2014) 2102–2106. [87] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Materialia. 60 (2012) 6814–6828. [88] N. Yazdipour, D. P. Dunne, E. Pereloma, Effect of grain size on the hydrogen diffusion process in steel using cellular automaton approach, in: Materials Science Forum, Trans Tech Publications, (2012) 1568–1573. [89] G. A. Young, J. R. Scully, The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy, Metallurgical and Materials Transactions A. 33 (2002) 1167–1181. [90] S. Osaki, D. Itoh, M. Nakai, SCC properties of 7050 series aluminum alloys in T6 and RRA tempers, Keikinzoku. 51 (2001) 222–227. [91] S. K. Lee, H. S. Kim, S. J. Noh, J. H. Han, Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800. deg. C for fusion reactor applications, Journal of the Korean Physical Society. 59 (2011) 3019–3023. [92] C. San Marchi, B. P. Somerday, S. L. Robinson, Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures, International Journal of Hydrogen Energy. 32 (2007) 100–116. [93] G. W. Hollenberg, E. P. Simonen, G. Kalinin, A. Terlain, Tritium/hydrogen barrier development, Fusion Engineering and Design. 28 (1995) 190–208. [94] R. Checchetto, M. Bonelli, L. M. Gratton, A. Miotello, A. Sabbioni, L. Guzman, Y. Horino, G. Benamati, Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel, Surface and Coatings Technology. 83 (1996) 40–44. [95] J. Yamabe, S. Matsuoka, Y. Murakami, Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment, International Journal of Hydrogen Energy. 38 (2013) 10141–10154.
|