帳號:guest(18.222.106.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃 威
作者(外文):Huang, Wei
論文名稱(中文):電容式耦合射頻氫氣電漿之數值模擬研究 - 特製電壓波形對離子能量分布函數之影響
論文名稱(外文):Numerical Study of Capacitively Coupled Radio Frequency Hydrogen Plasma Discharge - Effect of Tailored Voltage Waveforms
指導教授(中文):柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員(中文):張家豪
李志浩
口試委員(外文):Chang, Chia-hao
Lee, Chih-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011553
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:97
中文關鍵詞:低溫電漿數值模擬特製電壓波型離子能量分布氫氣電漿電容式耦合電漿源
外文關鍵詞:Low Temperature PlasmaHydrogen PlasmaNumerical SimulationTailored Voltage WaveformIon Energy DistributionCapacitively Coupled Plasma
相關次數:
  • 推薦推薦:1
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電容式耦合電漿源(Capacitively Couple Plasma, CCP)為半導體工業中常見的電漿製程應用。常見的應用例如雙頻耦合式電漿源(Dual Frequency CCP, DF-CCP),其中高頻主要為控制電漿生成,而低頻為控制離子能量分布(Ion Energy Distribution, IED),或使用特製電壓波形(Tailored Voltage Waveforms, TVWs)以達到控制離子能量分布之目的。本研究分為兩部分,第一部分為利用流體模型模擬氫氣電漿在單頻放電時基本特性的研究與探討。第二部分為氫氣電漿在特製波形放電下之基本特性的研究與探討。
本研究採用數值模擬計算軟體CFD-ACE+,以一維簡化CCP為模型。第一部分模擬單頻氫氣電漿源在低氣壓(小於1 Torr)的情況下電漿特性的分布情形,並觀察各粒子密度、電子溫度、以及電漿電位等參數的一維分布並使用內建的蒙地卡羅碰撞(Monte Carlo Collision, MCC)模型計算電極表面之離子能量分布。第二部分則模擬在特製波形氫氣電漿源的情況下,電漿的各項粒子密度、電子溫度、電漿電位以及離子能量分布的情形。本研究使用之特製波形由疊加四個頻率並調整其各諧波之間之相位差而成。
特製波形由13.56 MHz與其第二、三、四諧波頻率組成,其奇數諧波之相位為0,而偶數諧波之相位為0或π,稱此波形為peak以及valley。模擬結果顯示此類波形可產生正負對稱的自偏壓,並產生電不對稱效應。藉由調整自偏壓的強度可以控制離子到達電極表面的最大離子轟擊能量。在本研究中,透過特製波形產生的電不對稱效應可以在兩個電極分別產生相差約4倍之最大離子轟擊能量。若與傳統單頻放電相比,特製波形可維持其中一個電極上之離子能量分布不變,而另一電極上之離子能量分布範圍則可以減少為約四分之一。因此特製波形可以有效的減少離子能量分布的範圍以滿足在半導體製程中之各種應用。
Capacitively coupled plasma (CCP) is a common plasma process application in the semiconductor industry. In some common applications such as dual-frequency CCP, the high frequency is mainly to control the plasma generation, and the low frequency is to control the ion energy distribution (IED), or use tailored voltage waveforms (TVWs) to achieve the purpose of controlling IED. The purposes of this study are divided into two parts. The first part focus on investigating the plasma properties of hydrogen plasma in single-frequency discharge by a fluid model. The second part is to investigate the plasma properties of hydrogen plasma in tailored voltage waveform discharge by a fluid model.
The numerical simulation software CFD-ACE+ is used to model the one-dimensional(1D) CCP. In this study, the 1D distribution of parameters such as electron density, electron temperature, and plasma potential are observed, and the IEDFs on the electrode are calculated by the Monte Carlo Collision (MCC) model. The TVWs used in this study are obtained by superimposing four frequencies and adjusting the phase between their harmonics.
The TVWs consist of 13.56 MHz and its second, third, and fourth harmonic frequencies. The phase of the odd harmonics is 0, and the phase of the even harmonics is 0 or π. These waveforms are called “peak” or “valley”. The simulation results demonstrate that such TVWs can generate positive or negative symmetric self-bias, so call electrical asymmetry effect (EAE). The self-bias can control the maximum ion bombardment energy on one of the electrodes by switching the waveform from peak to valley. The EAE caused a difference of approximately four times in the maximum ion bombardment energy between two electrodes. Compared to the single frequency discharge, the TVWs can maintain the IEDF on one of the electrodes and reduce the range of IEDF on the other electrode. As a result, the TVWs effectively reduce the range of IEDF, catering to various applications in semiconductor processing.
摘要 i
Abstract ii
Content iv
List of Figures vi
Lists of Tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
Chapter 2 Literature Review 5
2.1 Ion Energy Distribution Function 5
2.2 Dual-Frequency Discharge 9
2.3 Tailored Voltage Waveforms 15
2.4 Summary of Literature Review 18
Chapter 3 Model Description 19
3.1 Introduction of CFD Software 19
3.2 Fluid Model 20
3.2.1 Electrons 20
3.2.2 Ions and Neutrals 23
3.2.3 Electromagnetics 25
3.3 Geometry 25
3.3.1 Boundary Condition 26
3.4 Reaction Database 27
3.4.1 Electronic Reaction Rate 27
3.4.2 Surface Plasma Chemistry 28
Chapter 4 Simulation Results 32
4.1 Simulation Parameters and Initial Conditions 32
4.2 Single Frequency 33
4.2.1 Discharge Characteristic, Single Frequency 33
4.2.2 Ion Energy Distribution Function, Single Frequency 46
4.2.3 Effect of Pressure, Single Frequency 47
4.3 Tailored Voltage Waveforms 52
4.3.1 Discharge Characteristic, TVWs 53
4.3.2 Ion Energy Distribution Function, TVWs 60
4.3.3 Effect of Pressure, Single Frequency 62
4.4 Comparison of IEDF, Single Frequency vs TVWs 67
Chapter 5 Summary 68
References 70
Appendix A. 78
Appendix B. 82
Appendix C. 85
C.1 Analysis of H+ IEDF Calculation Error in SF Discharge 85
C.2 Analysis of H2+ IEDF Calculation Error in TVW Discharge 88
C.3 Some Test on This Bug 90
D Appendix D. 92
E Appendix E. 95
E.1 Sticking Coefficient 95
E.2 Surface Reaction Setting Error 97
[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2 ed. Hoboken, New Jersey.: John Wiley & Sons, Inc., 2005.
[2] K. J. Kanarik et al., "Overview of atomic layer etching in the semiconductor industry," (in English), J. Vac. Sci. Technol. A, vol. 33, no. 2, Mar 2015, doi: Artn 020802 10.1116/1.4913379.
[3] A. Agarwal and M. J. Kushner, "Plasma atomic layer etching using conventional plasma equipment," (in English), J. Vac. Sci. Technol. A, vol. 27, no. 1, pp. 37-50, Jan 2009, doi: 10.1116/1.3021361.
[4] E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, "Ion energy distributions in rf sheaths; review, analysis and simulation," (in English), Plasma Sources Science & Technology, vol. 8, no. 3, pp. R45-R64, Aug 1999, doi: Doi 10.1088/0963-0252/8/3/202.
[5] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim, and J. W. Shon, "Ion energy distribution control in single and dual frequency capacitive plasma sources," (in English), Plasma Sources Science & Technology, vol. 14, no. 1, pp. 89-97, Feb 2005, doi: 10.1088/0963-0252/14/1/012.
[6] J. C. Wang, P. Tian, J. Kenney, S. Rauf, I. Korolov, and J. Schulze, "Ion energy distribution functions in a dual-frequency low-pressure capacitively-coupled plasma: experiments and particle-in-cell simulation," (in English), Plasma Sources Science & Technology, vol. 30, no. 7, Jul 2021, doi: ARTN 075031 10.1088/1361-6595/ac0da4.
[7] T. Faraz et al., "Precise ion energy control with tailored waveform biasing for atomic scale processing," (in English), J. Appl. Phys., vol. 128, no. 21, Dec 7 2020, doi: Artn 213301 10.1063/5.0028033.
[8] H. H. Goto, H. D. Lowe, and T. Ohmi, "Dual Excitation Reactive Ion Etcher for Low-Energy Plasma Processing," (in English), Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 10, no. 5, pp. 3048-3054, Sep-Oct 1992, doi: Doi 10.1116/1.577863.
[9] T. Kitajima, Y. Takeo, Z. L. Petrovic, and T. Makabe, "Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma," (in English), Applied Physics Letters, vol. 77, no. 4, pp. 489-491, Jul 24 2000, doi: Pii [S0003-6951(00)03330-1] Doi 10.1063/1.127020.
[10] P. C. Boyle, A. R. Ellingboe, and M. M. Turner, "Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices," (in English), J Phys D Appl Phys, vol. 37, no. 5, pp. 697-701, Mar 7 2004, doi: Pii S0011-3727(04)7152-0 Doi 10.1088/0022-3727/37/5/008.
[11] Z. H. Bi, Y. X. Liu, W. Jiang, X. Xu, and Y. N. Wang, "A brief review of dual-frequency capacitively coupled discharges," (in English), Current Applied Physics, vol. 11, no. 5, pp. S2-S8, Sep 2011, doi: 10.1016/j.cap.2011.07.002.
[12] S. H. Song and M. J. Kushner, "Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF4/O2," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 2, 2014, doi: 10.1116/1.4863948.
[13] S. Rauf, P. Tian, J. Kenney, and L. Dorf, "Effect of low frequency voltage waveform on plasma uniformity in a dual-frequency capacitively coupled plasma," (in English), Journal of Vacuum Science & Technology B, vol. 40, no. 3, May 2022, doi: Artn 032202 10.1116/6.0001732.
[14] X. V. Qin, Y. H. Ting, and A. E. Wendt, "Tailored ion energy distributions at an rf-biased plasma electrode," (in English), Plasma Sources Science & Technology, vol. 19, no. 6, Dec 2010, doi: Artn 065014 10.1088/0963-0252/19/6/065014.
[15] S. B. Wang and A. E. Wendt, "Control of ion energy distribution at substrates during plasma processing," (in English), J. Appl. Phys., vol. 88, no. 2, pp. 643-646, Jul 15 2000, doi: Doi 10.1063/1.373715.
[16] J. Schulze, E. Schungel, Z. Donko, and U. Czarnetzki, "The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges," (in English), Plasma Sources Science & Technology, vol. 20, no. 1, Feb 2011, doi: Artn 015017 10.1088/0963-0252/20/1/015017.
[17] T. Lafleur, R. W. Boswell, and J. P. Booth, "Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms," (in English), Applied Physics Letters, vol. 100, no. 19, May 7 2012, doi: Artn 194101 10.1063/1.4712128.
[18] T. Lafleur and J. P. Booth, "Control of the ion flux and ion energy in CCP discharges using non-sinusoidal voltage waveforms," (in English), J Phys D Appl Phys, vol. 45, no. 39, Oct 3 2012, doi: Artn 395203 10.1088/0022-3727/45/39/395203.
[19] T. Lafleur, P. A. Delattre, E. V. Johnson, and J. P. Booth, "Separate control of the ion flux and ion energy in capacitively coupled radio-frequency discharges using voltage waveform tailoring," (in English), Applied Physics Letters, vol. 101, no. 12, Sep 17 2012, doi: Artn 124104 10.1063/1.4754692.
[20] A. Derzsi, I. Korolov, E. Schungel, Z. Donko, and J. Schulze, "Electron heating and control of ion properties in capacitive discharges driven by customized voltage waveforms," (in English), Plasma Sources Science & Technology, vol. 22, no. 6, Dec 2013, doi: Artn 065009 10.1088/0963-0252/22/6/065009.
[21] T. Lafleur, "Tailored-waveform excitation of capacitively coupled plasmas and the electrical asymmetry effect," (in English), Plasma Sources Science & Technology, vol. 25, no. 1, Feb 2016, doi: Artn 013001 10.1088/0963-0252/25/1/013001.
[22] 黃宣文, "電容式耦合矽烷/氫氣電漿之數值模擬研究 -電壓波型影響," Master, 工程與系統科學系, NTHU, 2018.
[23] CFD-ACE+ User Guide. Applied Materials, 2023.
[24] B. Kalache, T. Novikova, A. F. I. Morral, P. R. I. Cabarrocas, W. Morscheidt, and K. Hassouni, "Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime," (in English), J Phys D Appl Phys, vol. 37, no. 13, pp. 1765-1773, Jul 7 2004, doi: Pii S0022-3727(04)72801-6 10.1088/0022-3727/37/13/007.
[25] O. Leroy, G. Gousset, and L. L. A. J. P. J. Jolly, "Two-dimensional modelling of SiH4-radio-frequency discharges for a-Si: H deposition," Plasma Sources Science and Technology, vol. 7, no. 3, p. 348, 1998.
[26] R. K. Janev, W. D. Langer, K. Jr. Evans, Elementary Processes in Hydrogen-Helium Plasmas. 1987.
[27] W. Van Gaens and A. Bogaerts, "Kinetic modelling for an atmospheric pressure argon plasma jet in humid air," (in English), J Phys D Appl Phys, vol. 46, no. 27, Jul 10 2013, doi: Artn 275201 10.1088/0022-3727/46/27/275201.
[28] T. Gougousi, R. Johnsen, and M. F. Golde, "Recombination of H3+ and D3+ ions in a flowing afterglow plasma," International Journal of Mass Spectrometry and Ion Processes, vol. 149, pp. 131-151, 1995.
[29] C. F. Chan, C. F. Burrell, and W. S. Cooper, "Model of Positive-Ion Sources for Neutral Beam Injection," (in English), J. Appl. Phys., vol. 54, no. 11, pp. 6119-6137, 1983, doi: Doi 10.1063/1.331948.
[30] C. C. Tian and C. R. Vidal, "Cross sections of the electron impact dissociative ionization of CO, CH4 and C2H2," (in English), J Phys B-at Mol Opt, vol. 31, no. 4, pp. 895-909, Feb 28 1998, doi: Doi 10.1088/0953-4075/31/4/031.
[31] M. Hayashi, "Monte Carlo simulation of electron avalanche in hydrogen," Le Journal de Physique Colloques, vol. 40, no. C7, pp. C7-45-C7-46, 1979.
[32] J. S. Yoon et al., "Cross sections for electron collisions with hydrogen molecules," (in English), J Phys Chem Ref Data, vol. 37, no. 2, pp. 913-931, 2008, doi: 10.1063/1.2838023.
[33] R. K. Janev, D. Reiter, and U. Samm, "Collision processes in low-temperature hydrogen plasmas," 2003.
[34] L. Marques, J. Jolly, and L. L. Alves, "Capacitively coupled radio-frequency hydrogen discharges: The role of kinetics," (in English), J. Appl. Phys., vol. 102, no. 6, Sep 15 2007, doi: Artn 063305 10.1063/1.2779268.
[35] M. Kirkpatrick, B. Dodet, and E. Odic, "Atmospheric pressure humid argon DBD plasma for the application of sterilization-measurement and simulation of hydrogen, oxygen, and hydrogen peroxide formation," International Journal of Plasma Environmental Science and Technology, vol. 1, no. 1, pp. 96-101, 2007.
[36] N. Harada and E. Herbst, "Modeling carbon chain anions in L1527," The Astrophysical Journal, vol. 685, no. 1, p. 272, 2008.
[37] H. Bruhns, H. Kreckel, K. Miller, X. Urbain, and D. Savin, "Absolute energy-resolved measurements of the H−+ H→ H 2+ e− associative detachment reaction using a merged-beam apparatus," Physical Review A, vol. 82, no. 4, p. 042708, 2010.
[38] https://www.quantemoldb.com/reactions/details/2484/ (accessed.
[39] I. Mendez, F. J. G.-V. V. J. Herrero, and I. Tanarro, "Atom and ion chemistry in low pressure hydrogen dc plasmas," J Phys Chem A, vol. 110, no. 18, pp. 6060-6, May 11 2006, doi: 10.1021/jp057182+.
[40] 曾維剛, "射頻電容式耦合氬氣/氫氣電漿 動力模式數值模擬計算分析," Master, 工程與系統科學系, NTHU, 2019.
[41] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate rf hydrogen plasmas," (in English), Plasma Sources Science & Technology, vol. 14, no. 3, pp. 459-466, Aug 2005, doi: 10.1088/0963-0252/14/3/007.
[42] S. Longo, M. Capitelli, and P. Diomede, "Particle models of discharge plasmas in molecular gases," in International Conference on Computational Science, 2004: Springer, pp. 580-587.
[43] L. S. A. Marques, J. Jolly, and L. L. Alves, "Electrical Characterization of Capacitively Coupled Radio Frequency Discharges in Hydrogen," (in English), Plasma Processes and Polymers, vol. 4, no. S1, pp. S937-S941, Apr 2007, doi: 10.1002/ppap.200732303.
[44] Y. R. Zhang, X. Xu, A. Bogaerts, and Y. N. Wang, "Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics," (in English), J Phys D Appl Phys, vol. 45, no. 1, Jan 11 2012, doi: Artn 015203 10.1088/0022-3727/45/1/015203.
[45] Y. R. Zhang, X. Xu, A. Bogaerts, and Y. N. Wang, "Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: I. Transient behaviour of electrodynamics and power deposition," (in English), J Phys D Appl Phys, vol. 45, no. 1, Jan 11 2012, doi: Artn 015202 10.1088/0022-3727/45/1/015202.
[46] A. Salabas and R. P. Brinkmann, "Non-neutral/quasi-neutral plasma edge definition for discharge models: A numerical example for dual frequency hydrogen capacitively coupled plasmas," (in English), Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, no. 6a, pp. 5203-5206, Jun 2006, doi: 10.1143/Jjap.45.5203.
[47] S. Nunomura, H. Katayama, and I. Yoshida, "Hydrogen atom kinetics in capacitively coupled plasmas," (in English), Plasma Sources Science & Technology, vol. 26, no. 5, May 1 2017, doi: ARTN 055018 10.1088/1361-6595/aa6610.
[48] A. Salabas and R. P. Brinkmann, "Numerical investigation of dual frequency capacitively coupled hydrogen plasmas," (in English), Plasma Sources Science & Technology, vol. 14, no. 2, pp. S53-S59, May 2005, doi: 10.1088/0963-0252/14/2/S07.
[49] E. Abdel-Fattah and H. Sugai, "Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas," (in English), Phys. Plasmas, vol. 20, no. 2, Feb 2013, doi: Artn 023501 10.1063/1.4789611.
[50] H. Bruhns, H. Kreckel, K. A. Miller, X. Urbain, and D. W. Savin, "Absolute energy-resolved measurements of the H- + H -> H-2 + e(-) associative detachment reaction using a merged-beam apparatus," (in English), Physical Review A, vol. 82, no. 4, p. 042708, Oct 19 2010, doi: ARTN 042708 10.1103/PhysRevA.82.042708.
[51] B. Bruneau et al., "Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry," (in English), Plasma Sources Science & Technology, vol. 25, no. 4, Aug 2016, doi: Artn 045019 10.1088/0963-0252/25/4/045019.
[52] K. C. Chen, K. F. Chiu, K. Ogiwara, L. W. Su, K. Uchino, and Y. Kawai, "Study of spatial profiles of capacitively coupled VHF H2 plasma by simulation," Japanese Journal of Applied Physics, vol. 56, no. 1S, 2016, doi: 10.7567/jjap.56.01ac05.
[53] A. Derzsi, B. Horvath, Z. Donko, and J. Schulze, "Surface processes in low-pressure capacitive radio frequency discharges driven by tailored voltage waveforms," (in English), Plasma Sources Science & Technology, vol. 29, no. 7, Jul 2020, doi: ARTN 074001 10.1088/1361-6595/ab9156.
[54] P. Diomede, B. Bruneau, S. Longo, E. Johnson, and J. P. Booth, "Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control," (in English), Plasma Sources Science & Technology, vol. 26, no. 7, Jul 1 2017, doi: ARTN 075007 10.1088/1361-6595/aa752c.
[55] P. Diomede, D. J. Economou, T. Lafleur, J. P. Booth, and S. Longo, "Radio-frequency capacitively coupled plasmas in hydrogen excited by tailored voltage waveforms: comparison of simulations with experiments," (in English), Plasma Sources Science & Technology, vol. 23, no. 6, Dec 2014, doi: Artn 065049 10.1088/0963-0252/23/6/065049.
[56] P. Diomede, S. Longo, D. J. Economou, and M. Capitelli, "Hybrid simulation of a dc-enhanced radio-frequency capacitive discharge in hydrogen," (in English), J Phys D Appl Phys, vol. 45, no. 17, May 2 2012, doi: Artn 175204 10.1088/0022-3727/45/17/175204.
[57] P. Diomede et al., "Fluid and kinetic models of the low temperature H2 plasma produced by a radio-frequency reactor," Phys. Plasmas, vol. 15, no. 10, 2008, doi: 10.1063/1.3006152.
[58] Z. Donkó, J. Schulze, B. G. Heil, and U. Czarnetzki, "PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect," Journal of Physics D: Applied Physics, vol. 42, no. 2, 2009, doi: 10.1088/0022-3727/42/2/025205.
[59] N. Harada and E. Herbst, "Modeling carbon chain anions in L1527," (in English), Astrophysical Journal, vol. 685, no. 1, pp. 272-280, Sep 20 2008, doi: Doi 10.1086/590468.
[60] P. Hartmann et al., "Control of electron velocity distributions at the wafer by tailored voltage waveforms in capacitively coupled plasmas to compensate surface charging in high-aspect ratio etch features," (in English), J Phys D Appl Phys, vol. 54, no. 25, Jun 24 2021, doi: ARTN 255202 10.1088/1361-6463/abf229.
[61] M. Hayashi, "Monte-Carlo Simulation of Electron Avalanche in Hydrogen," (in English), Journal De Physique, vol. 40, no. C7, pp. 45-46, 1979, doi: DOI 10.1051/jphyscol:1979722.
[62] B. G. Heil, U. Czarnetzki, R. P. Brinkmann, and T. Mussenbrock, "On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric," (in English), J Phys D Appl Phys, vol. 41, no. 16, Aug 21 2008, doi: Artn 165202 10.1088/0022-3727/41/16/165202.
[63] J. Jolly and J. P. Booth, "Atomic hydrogen densities in capacitively coupled very high-frequency plasmas in H2: Effect of excitation frequency," J. Appl. Phys., vol. 97, no. 10, 2005, doi: 10.1063/1.1900290.
[64] K. Köhler, D. E. Horne, and J. W. Coburn, "Frequency dependence of ion bombardment of grounded surfaces in rf argon glow discharges in a planar system," J. Appl. Phys., vol. 58, no. 9, pp. 3350-3355, 1985, doi: 10.1063/1.335797.
[65] J. Krištof et al., "Diagnostics of low-pressure hydrogen discharge created in a 13.56 MHz RF plasma reactor," Physica Scripta, vol. 91, no. 7, 2016, doi: 10.1088/0031-8949/91/7/074009.
[66] F. Krüger, H. Lee, S. K. Nam, and M. J. Kushner, "Electric field reversals resulting from voltage waveform tailoring in Ar/O2 capacitively coupled plasmas sustained in asymmetric systems," Plasma Sources Science and Technology, vol. 30, no. 8, 2021, doi: 10.1088/1361-6595/ac14a7.
[67] F. Krüger, S. Wilczek, T. Mussenbrock, and J. Schulze, "Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches," Plasma Sources Science and Technology, vol. 28, no. 7, 2019, doi: 10.1088/1361-6595/ab2c72.
[68] S. Longo and P. Diomede, "Modeling of Capacitively Coupled RF Plasmas in H2," Plasma Processes and Polymers, vol. 6, no. 5, pp. 370-379, 2009, doi: 10.1002/ppap.200800219.
[69] M. Meyyappan and T. R. Govindan, "Radio-Frequency Discharge Modeling - Moment Equations Approach," (in English), J. Appl. Phys., vol. 74, no. 4, pp. 2250-2259, Aug 15 1993, doi: Doi 10.1063/1.354708.
[70] S. Mohr, E. Schungel, J. Schulze, and U. Czarnetzki, "Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen," (in English), J Phys D Appl Phys, vol. 46, no. 43, Oct 30 2013, doi: Artn 435201 10.1088/0022-3727/46/43/435201.
[71] T. Novikova, B. Kalache, P. Bulkin, K. Hassouni, W. Morscheidt, and P. R. I. Cabarrocas, "Numerical modeling of capacitively coupled hydrogen plasmas: Effects of frequency and pressure," (in English), J. Appl. Phys., vol. 93, no. 6, pp. 3198-3206, Mar 15 2003, doi: 10.1063/1.1555678.
[72] A. D. Panarese, P. and S. Longo, "Kinetic modelling of atom production and thermalization in CCRF discharges in H2," Plasma Sources Science and Technology, vol. 22, no. 4, 2013, doi: 10.1088/0963-0252/22/4/045017.
[73] A. Perret, P. Chabert, J. Jolly, and J. P. Booth, "Ion energy uniformity in high-frequency capacitive discharges," (in English), Applied Physics Letters, vol. 86, no. 2, Jan 10 2005, doi: Artn 021501 10.1063/1.1848183.
[74] E. Schüngel, S. Mohr, J. Schulze, U. Czarnetzki, and M. J. Kushner, "Ion distribution functions at the electrodes of capacitively coupled high-pressure hydrogen discharges," Plasma Sources Science and Technology, vol. 23, no. 1, 2013, doi: 10.1088/0963-0252/23/1/015001.
[75] G. A. Skarphedinsson and J. T. Gudmundsson, "Tailored voltage waveforms applied to a capacitively coupled chlorine discharge," (in English), Plasma Sources Science & Technology, vol. 29, no. 8, Aug 2020, doi: ARTN 084004 10.1088/1361-6595/aba920.
[76] W. V. Gaens and A. Bogaerts, "Kinetic modelling for an atmospheric pressure argon plasma jet in humid air," (in English), Journal of Physics D: Applied Physics, vol. 46, no. 27, Jul 10 2013, doi: 10.1088/0022-3727/46/27/275201.
[77] C. Wild and P. Koidl, "Ion and electron dynamics in the sheath of radio‐frequency glow discharges," J. Appl. Phys., vol. 69, no. 5, September 1991. [Online]. Available: https://doi.org/10.1063/1.348601.
[78] J. Gregorio. "Introduction to Modeling Plasma Chemistry in COMSOL Multiphysics®." COMSOL Blog. https://www.comsol.com/blogs/introduction-to-modeling-plasma-chemistry-in-comsol-multiphysics/ (accessed.
[79] 吳昌祐, "高頻低壓大面積電容式耦合電漿之駐波效 應數值模擬研究分析," Master, 工程與系統科學系, NTHU, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *