|
[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2 ed. Hoboken, New Jersey.: John Wiley & Sons, Inc., 2005. [2] K. J. Kanarik et al., "Overview of atomic layer etching in the semiconductor industry," (in English), J. Vac. Sci. Technol. A, vol. 33, no. 2, Mar 2015, doi: Artn 020802 10.1116/1.4913379. [3] A. Agarwal and M. J. Kushner, "Plasma atomic layer etching using conventional plasma equipment," (in English), J. Vac. Sci. Technol. A, vol. 27, no. 1, pp. 37-50, Jan 2009, doi: 10.1116/1.3021361. [4] E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, "Ion energy distributions in rf sheaths; review, analysis and simulation," (in English), Plasma Sources Science & Technology, vol. 8, no. 3, pp. R45-R64, Aug 1999, doi: Doi 10.1088/0963-0252/8/3/202. [5] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim, and J. W. Shon, "Ion energy distribution control in single and dual frequency capacitive plasma sources," (in English), Plasma Sources Science & Technology, vol. 14, no. 1, pp. 89-97, Feb 2005, doi: 10.1088/0963-0252/14/1/012. [6] J. C. Wang, P. Tian, J. Kenney, S. Rauf, I. Korolov, and J. Schulze, "Ion energy distribution functions in a dual-frequency low-pressure capacitively-coupled plasma: experiments and particle-in-cell simulation," (in English), Plasma Sources Science & Technology, vol. 30, no. 7, Jul 2021, doi: ARTN 075031 10.1088/1361-6595/ac0da4. [7] T. Faraz et al., "Precise ion energy control with tailored waveform biasing for atomic scale processing," (in English), J. Appl. Phys., vol. 128, no. 21, Dec 7 2020, doi: Artn 213301 10.1063/5.0028033. [8] H. H. Goto, H. D. Lowe, and T. Ohmi, "Dual Excitation Reactive Ion Etcher for Low-Energy Plasma Processing," (in English), Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 10, no. 5, pp. 3048-3054, Sep-Oct 1992, doi: Doi 10.1116/1.577863. [9] T. Kitajima, Y. Takeo, Z. L. Petrovic, and T. Makabe, "Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma," (in English), Applied Physics Letters, vol. 77, no. 4, pp. 489-491, Jul 24 2000, doi: Pii [S0003-6951(00)03330-1] Doi 10.1063/1.127020. [10] P. C. Boyle, A. R. Ellingboe, and M. M. Turner, "Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices," (in English), J Phys D Appl Phys, vol. 37, no. 5, pp. 697-701, Mar 7 2004, doi: Pii S0011-3727(04)7152-0 Doi 10.1088/0022-3727/37/5/008. [11] Z. H. Bi, Y. X. Liu, W. Jiang, X. Xu, and Y. N. Wang, "A brief review of dual-frequency capacitively coupled discharges," (in English), Current Applied Physics, vol. 11, no. 5, pp. S2-S8, Sep 2011, doi: 10.1016/j.cap.2011.07.002. [12] S. H. Song and M. J. Kushner, "Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF4/O2," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 2, 2014, doi: 10.1116/1.4863948. [13] S. Rauf, P. Tian, J. Kenney, and L. Dorf, "Effect of low frequency voltage waveform on plasma uniformity in a dual-frequency capacitively coupled plasma," (in English), Journal of Vacuum Science & Technology B, vol. 40, no. 3, May 2022, doi: Artn 032202 10.1116/6.0001732. [14] X. V. Qin, Y. H. Ting, and A. E. Wendt, "Tailored ion energy distributions at an rf-biased plasma electrode," (in English), Plasma Sources Science & Technology, vol. 19, no. 6, Dec 2010, doi: Artn 065014 10.1088/0963-0252/19/6/065014. [15] S. B. Wang and A. E. Wendt, "Control of ion energy distribution at substrates during plasma processing," (in English), J. Appl. Phys., vol. 88, no. 2, pp. 643-646, Jul 15 2000, doi: Doi 10.1063/1.373715. [16] J. Schulze, E. Schungel, Z. Donko, and U. Czarnetzki, "The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges," (in English), Plasma Sources Science & Technology, vol. 20, no. 1, Feb 2011, doi: Artn 015017 10.1088/0963-0252/20/1/015017. [17] T. Lafleur, R. W. Boswell, and J. P. Booth, "Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms," (in English), Applied Physics Letters, vol. 100, no. 19, May 7 2012, doi: Artn 194101 10.1063/1.4712128. [18] T. Lafleur and J. P. Booth, "Control of the ion flux and ion energy in CCP discharges using non-sinusoidal voltage waveforms," (in English), J Phys D Appl Phys, vol. 45, no. 39, Oct 3 2012, doi: Artn 395203 10.1088/0022-3727/45/39/395203. [19] T. Lafleur, P. A. Delattre, E. V. Johnson, and J. P. Booth, "Separate control of the ion flux and ion energy in capacitively coupled radio-frequency discharges using voltage waveform tailoring," (in English), Applied Physics Letters, vol. 101, no. 12, Sep 17 2012, doi: Artn 124104 10.1063/1.4754692. [20] A. Derzsi, I. Korolov, E. Schungel, Z. Donko, and J. Schulze, "Electron heating and control of ion properties in capacitive discharges driven by customized voltage waveforms," (in English), Plasma Sources Science & Technology, vol. 22, no. 6, Dec 2013, doi: Artn 065009 10.1088/0963-0252/22/6/065009. [21] T. Lafleur, "Tailored-waveform excitation of capacitively coupled plasmas and the electrical asymmetry effect," (in English), Plasma Sources Science & Technology, vol. 25, no. 1, Feb 2016, doi: Artn 013001 10.1088/0963-0252/25/1/013001. [22] 黃宣文, "電容式耦合矽烷/氫氣電漿之數值模擬研究 -電壓波型影響," Master, 工程與系統科學系, NTHU, 2018. [23] CFD-ACE+ User Guide. Applied Materials, 2023. [24] B. Kalache, T. Novikova, A. F. I. Morral, P. R. I. Cabarrocas, W. Morscheidt, and K. Hassouni, "Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime," (in English), J Phys D Appl Phys, vol. 37, no. 13, pp. 1765-1773, Jul 7 2004, doi: Pii S0022-3727(04)72801-6 10.1088/0022-3727/37/13/007. [25] O. Leroy, G. Gousset, and L. L. A. J. P. J. Jolly, "Two-dimensional modelling of SiH4-radio-frequency discharges for a-Si: H deposition," Plasma Sources Science and Technology, vol. 7, no. 3, p. 348, 1998. [26] R. K. Janev, W. D. Langer, K. Jr. Evans, Elementary Processes in Hydrogen-Helium Plasmas. 1987. [27] W. Van Gaens and A. Bogaerts, "Kinetic modelling for an atmospheric pressure argon plasma jet in humid air," (in English), J Phys D Appl Phys, vol. 46, no. 27, Jul 10 2013, doi: Artn 275201 10.1088/0022-3727/46/27/275201. [28] T. Gougousi, R. Johnsen, and M. F. Golde, "Recombination of H3+ and D3+ ions in a flowing afterglow plasma," International Journal of Mass Spectrometry and Ion Processes, vol. 149, pp. 131-151, 1995. [29] C. F. Chan, C. F. Burrell, and W. S. Cooper, "Model of Positive-Ion Sources for Neutral Beam Injection," (in English), J. Appl. Phys., vol. 54, no. 11, pp. 6119-6137, 1983, doi: Doi 10.1063/1.331948. [30] C. C. Tian and C. R. Vidal, "Cross sections of the electron impact dissociative ionization of CO, CH4 and C2H2," (in English), J Phys B-at Mol Opt, vol. 31, no. 4, pp. 895-909, Feb 28 1998, doi: Doi 10.1088/0953-4075/31/4/031. [31] M. Hayashi, "Monte Carlo simulation of electron avalanche in hydrogen," Le Journal de Physique Colloques, vol. 40, no. C7, pp. C7-45-C7-46, 1979. [32] J. S. Yoon et al., "Cross sections for electron collisions with hydrogen molecules," (in English), J Phys Chem Ref Data, vol. 37, no. 2, pp. 913-931, 2008, doi: 10.1063/1.2838023. [33] R. K. Janev, D. Reiter, and U. Samm, "Collision processes in low-temperature hydrogen plasmas," 2003. [34] L. Marques, J. Jolly, and L. L. Alves, "Capacitively coupled radio-frequency hydrogen discharges: The role of kinetics," (in English), J. Appl. Phys., vol. 102, no. 6, Sep 15 2007, doi: Artn 063305 10.1063/1.2779268. [35] M. Kirkpatrick, B. Dodet, and E. Odic, "Atmospheric pressure humid argon DBD plasma for the application of sterilization-measurement and simulation of hydrogen, oxygen, and hydrogen peroxide formation," International Journal of Plasma Environmental Science and Technology, vol. 1, no. 1, pp. 96-101, 2007. [36] N. Harada and E. Herbst, "Modeling carbon chain anions in L1527," The Astrophysical Journal, vol. 685, no. 1, p. 272, 2008. [37] H. Bruhns, H. Kreckel, K. Miller, X. Urbain, and D. Savin, "Absolute energy-resolved measurements of the H−+ H→ H 2+ e− associative detachment reaction using a merged-beam apparatus," Physical Review A, vol. 82, no. 4, p. 042708, 2010. [38] https://www.quantemoldb.com/reactions/details/2484/ (accessed. [39] I. Mendez, F. J. G.-V. V. J. Herrero, and I. Tanarro, "Atom and ion chemistry in low pressure hydrogen dc plasmas," J Phys Chem A, vol. 110, no. 18, pp. 6060-6, May 11 2006, doi: 10.1021/jp057182+. [40] 曾維剛, "射頻電容式耦合氬氣/氫氣電漿 動力模式數值模擬計算分析," Master, 工程與系統科學系, NTHU, 2019. [41] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate rf hydrogen plasmas," (in English), Plasma Sources Science & Technology, vol. 14, no. 3, pp. 459-466, Aug 2005, doi: 10.1088/0963-0252/14/3/007. [42] S. Longo, M. Capitelli, and P. Diomede, "Particle models of discharge plasmas in molecular gases," in International Conference on Computational Science, 2004: Springer, pp. 580-587. [43] L. S. A. Marques, J. Jolly, and L. L. Alves, "Electrical Characterization of Capacitively Coupled Radio Frequency Discharges in Hydrogen," (in English), Plasma Processes and Polymers, vol. 4, no. S1, pp. S937-S941, Apr 2007, doi: 10.1002/ppap.200732303. [44] Y. R. Zhang, X. Xu, A. Bogaerts, and Y. N. Wang, "Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics," (in English), J Phys D Appl Phys, vol. 45, no. 1, Jan 11 2012, doi: Artn 015203 10.1088/0022-3727/45/1/015203. [45] Y. R. Zhang, X. Xu, A. Bogaerts, and Y. N. Wang, "Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: I. Transient behaviour of electrodynamics and power deposition," (in English), J Phys D Appl Phys, vol. 45, no. 1, Jan 11 2012, doi: Artn 015202 10.1088/0022-3727/45/1/015202. [46] A. Salabas and R. P. Brinkmann, "Non-neutral/quasi-neutral plasma edge definition for discharge models: A numerical example for dual frequency hydrogen capacitively coupled plasmas," (in English), Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, no. 6a, pp. 5203-5206, Jun 2006, doi: 10.1143/Jjap.45.5203. [47] S. Nunomura, H. Katayama, and I. Yoshida, "Hydrogen atom kinetics in capacitively coupled plasmas," (in English), Plasma Sources Science & Technology, vol. 26, no. 5, May 1 2017, doi: ARTN 055018 10.1088/1361-6595/aa6610. [48] A. Salabas and R. P. Brinkmann, "Numerical investigation of dual frequency capacitively coupled hydrogen plasmas," (in English), Plasma Sources Science & Technology, vol. 14, no. 2, pp. S53-S59, May 2005, doi: 10.1088/0963-0252/14/2/S07. [49] E. Abdel-Fattah and H. Sugai, "Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas," (in English), Phys. Plasmas, vol. 20, no. 2, Feb 2013, doi: Artn 023501 10.1063/1.4789611. [50] H. Bruhns, H. Kreckel, K. A. Miller, X. Urbain, and D. W. Savin, "Absolute energy-resolved measurements of the H- + H -> H-2 + e(-) associative detachment reaction using a merged-beam apparatus," (in English), Physical Review A, vol. 82, no. 4, p. 042708, Oct 19 2010, doi: ARTN 042708 10.1103/PhysRevA.82.042708. [51] B. Bruneau et al., "Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry," (in English), Plasma Sources Science & Technology, vol. 25, no. 4, Aug 2016, doi: Artn 045019 10.1088/0963-0252/25/4/045019. [52] K. C. Chen, K. F. Chiu, K. Ogiwara, L. W. Su, K. Uchino, and Y. Kawai, "Study of spatial profiles of capacitively coupled VHF H2 plasma by simulation," Japanese Journal of Applied Physics, vol. 56, no. 1S, 2016, doi: 10.7567/jjap.56.01ac05. [53] A. Derzsi, B. Horvath, Z. Donko, and J. Schulze, "Surface processes in low-pressure capacitive radio frequency discharges driven by tailored voltage waveforms," (in English), Plasma Sources Science & Technology, vol. 29, no. 7, Jul 2020, doi: ARTN 074001 10.1088/1361-6595/ab9156. [54] P. Diomede, B. Bruneau, S. Longo, E. Johnson, and J. P. Booth, "Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control," (in English), Plasma Sources Science & Technology, vol. 26, no. 7, Jul 1 2017, doi: ARTN 075007 10.1088/1361-6595/aa752c. [55] P. Diomede, D. J. Economou, T. Lafleur, J. P. Booth, and S. Longo, "Radio-frequency capacitively coupled plasmas in hydrogen excited by tailored voltage waveforms: comparison of simulations with experiments," (in English), Plasma Sources Science & Technology, vol. 23, no. 6, Dec 2014, doi: Artn 065049 10.1088/0963-0252/23/6/065049. [56] P. Diomede, S. Longo, D. J. Economou, and M. Capitelli, "Hybrid simulation of a dc-enhanced radio-frequency capacitive discharge in hydrogen," (in English), J Phys D Appl Phys, vol. 45, no. 17, May 2 2012, doi: Artn 175204 10.1088/0022-3727/45/17/175204. [57] P. Diomede et al., "Fluid and kinetic models of the low temperature H2 plasma produced by a radio-frequency reactor," Phys. Plasmas, vol. 15, no. 10, 2008, doi: 10.1063/1.3006152. [58] Z. Donkó, J. Schulze, B. G. Heil, and U. Czarnetzki, "PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect," Journal of Physics D: Applied Physics, vol. 42, no. 2, 2009, doi: 10.1088/0022-3727/42/2/025205. [59] N. Harada and E. Herbst, "Modeling carbon chain anions in L1527," (in English), Astrophysical Journal, vol. 685, no. 1, pp. 272-280, Sep 20 2008, doi: Doi 10.1086/590468. [60] P. Hartmann et al., "Control of electron velocity distributions at the wafer by tailored voltage waveforms in capacitively coupled plasmas to compensate surface charging in high-aspect ratio etch features," (in English), J Phys D Appl Phys, vol. 54, no. 25, Jun 24 2021, doi: ARTN 255202 10.1088/1361-6463/abf229. [61] M. Hayashi, "Monte-Carlo Simulation of Electron Avalanche in Hydrogen," (in English), Journal De Physique, vol. 40, no. C7, pp. 45-46, 1979, doi: DOI 10.1051/jphyscol:1979722. [62] B. G. Heil, U. Czarnetzki, R. P. Brinkmann, and T. Mussenbrock, "On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric," (in English), J Phys D Appl Phys, vol. 41, no. 16, Aug 21 2008, doi: Artn 165202 10.1088/0022-3727/41/16/165202. [63] J. Jolly and J. P. Booth, "Atomic hydrogen densities in capacitively coupled very high-frequency plasmas in H2: Effect of excitation frequency," J. Appl. Phys., vol. 97, no. 10, 2005, doi: 10.1063/1.1900290. [64] K. Köhler, D. E. Horne, and J. W. Coburn, "Frequency dependence of ion bombardment of grounded surfaces in rf argon glow discharges in a planar system," J. Appl. Phys., vol. 58, no. 9, pp. 3350-3355, 1985, doi: 10.1063/1.335797. [65] J. Krištof et al., "Diagnostics of low-pressure hydrogen discharge created in a 13.56 MHz RF plasma reactor," Physica Scripta, vol. 91, no. 7, 2016, doi: 10.1088/0031-8949/91/7/074009. [66] F. Krüger, H. Lee, S. K. Nam, and M. J. Kushner, "Electric field reversals resulting from voltage waveform tailoring in Ar/O2 capacitively coupled plasmas sustained in asymmetric systems," Plasma Sources Science and Technology, vol. 30, no. 8, 2021, doi: 10.1088/1361-6595/ac14a7. [67] F. Krüger, S. Wilczek, T. Mussenbrock, and J. Schulze, "Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches," Plasma Sources Science and Technology, vol. 28, no. 7, 2019, doi: 10.1088/1361-6595/ab2c72. [68] S. Longo and P. Diomede, "Modeling of Capacitively Coupled RF Plasmas in H2," Plasma Processes and Polymers, vol. 6, no. 5, pp. 370-379, 2009, doi: 10.1002/ppap.200800219. [69] M. Meyyappan and T. R. Govindan, "Radio-Frequency Discharge Modeling - Moment Equations Approach," (in English), J. Appl. Phys., vol. 74, no. 4, pp. 2250-2259, Aug 15 1993, doi: Doi 10.1063/1.354708. [70] S. Mohr, E. Schungel, J. Schulze, and U. Czarnetzki, "Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen," (in English), J Phys D Appl Phys, vol. 46, no. 43, Oct 30 2013, doi: Artn 435201 10.1088/0022-3727/46/43/435201. [71] T. Novikova, B. Kalache, P. Bulkin, K. Hassouni, W. Morscheidt, and P. R. I. Cabarrocas, "Numerical modeling of capacitively coupled hydrogen plasmas: Effects of frequency and pressure," (in English), J. Appl. Phys., vol. 93, no. 6, pp. 3198-3206, Mar 15 2003, doi: 10.1063/1.1555678. [72] A. D. Panarese, P. and S. Longo, "Kinetic modelling of atom production and thermalization in CCRF discharges in H2," Plasma Sources Science and Technology, vol. 22, no. 4, 2013, doi: 10.1088/0963-0252/22/4/045017. [73] A. Perret, P. Chabert, J. Jolly, and J. P. Booth, "Ion energy uniformity in high-frequency capacitive discharges," (in English), Applied Physics Letters, vol. 86, no. 2, Jan 10 2005, doi: Artn 021501 10.1063/1.1848183. [74] E. Schüngel, S. Mohr, J. Schulze, U. Czarnetzki, and M. J. Kushner, "Ion distribution functions at the electrodes of capacitively coupled high-pressure hydrogen discharges," Plasma Sources Science and Technology, vol. 23, no. 1, 2013, doi: 10.1088/0963-0252/23/1/015001. [75] G. A. Skarphedinsson and J. T. Gudmundsson, "Tailored voltage waveforms applied to a capacitively coupled chlorine discharge," (in English), Plasma Sources Science & Technology, vol. 29, no. 8, Aug 2020, doi: ARTN 084004 10.1088/1361-6595/aba920. [76] W. V. Gaens and A. Bogaerts, "Kinetic modelling for an atmospheric pressure argon plasma jet in humid air," (in English), Journal of Physics D: Applied Physics, vol. 46, no. 27, Jul 10 2013, doi: 10.1088/0022-3727/46/27/275201. [77] C. Wild and P. Koidl, "Ion and electron dynamics in the sheath of radio‐frequency glow discharges," J. Appl. Phys., vol. 69, no. 5, September 1991. [Online]. Available: https://doi.org/10.1063/1.348601. [78] J. Gregorio. "Introduction to Modeling Plasma Chemistry in COMSOL Multiphysics®." COMSOL Blog. https://www.comsol.com/blogs/introduction-to-modeling-plasma-chemistry-in-comsol-multiphysics/ (accessed. [79] 吳昌祐, "高頻低壓大面積電容式耦合電漿之駐波效 應數值模擬研究分析," Master, 工程與系統科學系, NTHU, 2021.
|