帳號:guest(18.221.107.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳孟渝
作者(外文):Chen, Meng-Yu
論文名稱(中文):重離子照射終端結構之輻射損傷對於氮化鎵材料特性之影響研究
論文名稱(外文):Influence of radiation damage of heavy ion irradiated edge termination on material characteristics of gallium nitride
指導教授(中文):梁正宏
趙得勝
指導教授(外文):Liang, Jenq-Horng
Chao, Der-Sheng
口試委員(中文):林志明
陳邦旭
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011548
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:84
中文關鍵詞:離子佈植氮化鎵輻照損傷終端結構
外文關鍵詞:ion implantationgallium nitrideradiation damageedge termination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
寬能隙半導體材料氮化鎵具有優異的物理特性,適合高功率領域之材料應用。離子照射終端結構的步驟,可使元件之崩潰電壓大幅增加,為氮化鎵功率元件之重要製程。然而,高劑量的離子照射,伴隨著嚴重的輻射損傷效應,導致氮化鎵材料特性以及晶格中載子傳導機制,產生劣化的現象,為離子照射於終端結構應用須衡量之要點。本研究於氮化鎵材料進行氬離子、氦離子照射實驗,接續進行多項材料特性分析:透過霍爾效應量測與拉曼散射光譜分析,呈現受輻照氮化鎵之載子移除效應,經過180 keV、 6×1015 cm-2 氬離子照射之樣品,載子移除比例約為32.5 %;而離子照射所導致氮化鎵之載子傳輸機制劣化的情形,則反映在樣品薄膜電阻及載子遷移率的變化。透過X光繞射分析與拉曼散射光譜分析,定義樣品受輻照損傷的程度,並且判斷非晶層的形成,發生於180 keV、1.2×1015至3.6×1015 cm-2劑量範圍的氬離子照射;而拉曼光譜結果則呈現氮化鎵次晶格的劣化情形。光致發光頻譜之分析結果,呈現氮化鎵輻照誘發缺陷對載子復合行為的影響,導致近能帶邊緣放射以及黃光帶雜質輻射躍遷,均出現相應的特性變化。氮化鎵在氬離子照射後所產生的能隙減小、穿透率下降等變化,則透過紫外-可見光譜取得分析結果。此外,退火程序對氮化鎵形成的溫度效應,以及背後的機制於本論文中亦有探討。在低溫範圍,退火之溫度效應由氮化鎵內的輻照誘發缺陷特性變化所主導;而較高的溫度下,退火程序則產生顯著的氮化鎵晶格修復效應,使氮化鎵材料特性呈穩定的回復。上述的材料分析結果經過統整比對,使本論文得以就材料科學領域,分析離子照射實驗於氮化鎵材料所產生之損傷效應,作為終端結構製程上的參考。
Gallium nitride (GaN) -based electronic devices possess great potential in applications of power electronics due to its wide bandgap and other excellent intrinsic properties. To suppress the crowded electric-field and thus increase the breakdown voltage of GaN power devices during reverse operation, edge termination technique should be incorporated. Heavy ion implantation creates radiation-induced defects that modify the electric-field distribution in GaN and thus achieve edge termination in n-type GaN. However, ion irradiation with high fluence inevitably causes radiation damage, which is detrimental to the electrical and material properties of GaN crystal. In this study, argon (Ar) irradiation and helium (He) irradiation was performed on epitaxial GaN layer. The radiation effects of ion implantation on the characteristics of GaN epitaxial layer were then thoroughly investigated. Hall effect measurement results indicated that the carrier concentration of GaN decrease with the increase of Ar ion fluence. About 32.5% carriers in GaN were removed after Ar ion implantation with a maximum fluence of 6×1015 cm-2. Furthermore, the degradation on carrier transportation in GaN lattice is also presented. As found in XRD spectra, a localized amorphous layer may be formed in GaN crystal when Ar ion fluence is at the range of 1.2×1015 to 3.6×1015 cm-2. The results of Raman scattering spectra also evidenced that Ar ion implantation on GaN leads to the formation of sublattice damage and degradation in electrical properties. From the PL spectra results, the radiation-induced defects are found to be trapping carriers effectively, causing the decay of near band edge emission (NBE) and yellow luminescence band (YL band). The reduction of bandgap energy and decreased transmittance of GaN after argon ion irradiation are also analyzed through ultraviolet-visible (UV-Vis) spectroscopy. In addition, post irradiation annealing was carried out. At a relatively low annealing temperature, the material characteristics of GaN is dominated by the behaviors of radiation-induced defects; at high annealing temperature, GaN recovers from radiation damage, leading to a remarkable restoration on its material characteristics. By comparing the results of above material analysis, this thesis offers valuable insights into the radiation damage effects of GaN caused by heavy ion irradiation, and can be serve as a reference for the heavy ion implantation edge termination on GaN device.
摘要........ i
Abstract........ ii
致謝........ iv
目錄........ v
表目錄........ vii
圖目錄........ ix
第一章 前言........ 1
第二章 文獻回顧........ 2
2.1 離子照射於終端結構應用........ 2
2.2 氮化鎵材料受粒子照射損傷研究........ 5
2.2-1 材料電性研究........ 5
2.2-2 材料結構性研究........ 8
2.2-3 輻照誘發缺陷之特性研究........ 11
2.2-4 光譜學研究........ 13
第三章 實驗方法........ 23
3.1 材料製備........ 23
3.2 SRIM 模擬........ 23
3.3 離子照射........ 24
3.4 退火步驟........ 26
3.5 材料分析........ 28
3.5-1 霍爾效應量測........ 28
3.5-2 X 光繞射分析........ 31
3.5-3 光致發光頻譜分析........ 33
3.5-4 拉曼散射光譜分析........ 35
3.5-5 紫外-可見光譜分析........ 37
第四章 結果與討論........ 38
4.1 SRIM 模擬........ 38
4.2 霍爾效應量測........ 40
4.3 X 光繞射分析........ 51
4.4 光致發光頻譜分析........ 56
4.5 拉曼散射光譜分析........ 63
4.6 紫外-可見光譜分析........ 70
第五章 結論與未來建議........ 72
5.1 結論........ 72
5.2 未來建議........ 73
文獻參考........ 75


[1] Tuomisto, F., Ranki, V., Look, D. C., Farlow, G. C. "Introduction and recovery of Ga and N sublattice defects in electron-irradiated GaN." Physical Review B 76.16 (2007): 165207.
[2] Alexis C. Vilas Bôas, M.A.A. de Melo, R.B.B. Santos, R. Giacomini, N.H. Medina, L.E. Seixas, S. Finco, F.R. Palomo, A. Romero-Maestre, Marcilei A. Guazzelli "Ionizing radiation hardness tests of GaN HEMTs for harsh environments." Microelectronics Reliability 116 (2021): 114000.
[3] Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A. "Ion implantation doping and isolation of GaN." Applied physics letters 67.10 (1995): 1435-1437.
[4] Binari, S. C., Dietrich, H. B., Kelner, G., Rowland, L. B., Doverspike, K., Wickenden, D. K. "H, He, and N implant isolation of n‐type GaN." Journal of applied physics 78.5 (1995): 3008-3011.
[5] Cao, X. A., Pearton, S. J., Dang, G. T., Zhang, A. P., Ren, F., Wilson, R. G., Van Hove, J. M. "Creation of high resistivity GaN by implantation of Ti, O, Fe, or Cr." Journal of Applied Physics 87.3 (2000): 1091-1095.
[6] Mohammad, S. N., Eddy Jr, C. R., & Kub, F. "Ion-implanted edge termination for GaN Schottky diode rectifiers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24.1 (2006): 178-184.
[7] Maciej, M., Takashi, I., Kyung, P. N., Hideki, S., Tetsuo, N., Tsutomu, U., Michal, B., Jun, S., Tetsu, K. "Mg-implanted bevel edge termination structure for GaN power device applications." Applied Physics Letters 118.9 (2021): 093502.
[8] Ozbek, A. M., Baliga, B. J. "Planar nearly ideal edge-termination technique for GaN devices." IEEE electron device letters 32.3 (2011): 300-302.
[9] Guo, X., Zhong, Y., He, J., Zhou, Y., Su, S., Chen, X., Liu, J., Gao, H., Sun, X., Zhou, Q., Sun, Q., Yang, H. "High-Voltage and High-I ON/I OFF Quasi-Vertical GaN-on-Si Schottky Barrier Diode With Argon-Implanted Termination." IEEE Electron Device Letters 42.4 (2021): 473-476.
[10] Guo, X., Zhong, Y., Chen, X., Zhou, Y., Su, S., Yan, S., Liu, J., Sun, X., Sun, Q., Yang, H. "Reverse leakage and breakdown mechanisms of vertical GaN-on-Si Schottky barrier diodes with and without implanted termination." Applied Physics Letters 118.24 (2021): 243501.
[11] Han, S., Yang, S., Sheng, K. "Fluorine-implanted termination for vertical GaN Schottky rectifier with high blocking voltage and low forward voltage drop." IEEE Electron Device Letters 40.7 (2019): 1040-1043.
[12] Liu, X., Lin, F., Li, J., Lin, Y., Wu, J., Wang, H., Li, X., Huang, S., Wang, Q., Chiu, H. C., Kuo, H. C. "1.7-kV Vertical GaN-on-GaN Schottky Barrier Diodes With Helium-Implanted Edge Termination." IEEE Transactions on Electron Devices 69.4 (2022): 1938-1944.
[13] Dickerson, J. R., Allerman, A. A., Bryant, B. N., Fischer, A. J., King, M. P., Moseley, M. W., Armstrong, A. M., Kaplar, R. J., Kizilyalli, I. C., Aktas, O., Wierer, J. J. "Vertical GaN power diodes with a bilayer edge termination." IEEE Transactions on Electron Devices 63.1 (2015): 419-425.
[14] Kucheyev, S. O., Williams, J. S., Pearton, S. J. "Ion implantation into GaN." Materials Science and Engineering: R: Reports 33.2-3 (2001): 51-108.
[15] Wendler, E., Kamarou, A., Alves, E., Gärtner, K., Wesch, W. "Three-step amorphisation process in ion-implanted GaN at 15 K." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 206 (2003): 1028-1032.
[16] Stanislaus, W. J., Poate, J. M. "Ion implantation and beam processing. " Academic Press, 2014.
[17] Boudinov, H., Kucheyev, S. O., Williams, J. S., Jagadish, C., & Li, G. "Electrical isolation of GaN by MeV ion irradiation. " Applied Physics Letters, 78.7 (2001): 943-945.
[18] Kucheyev, S. O., Williams, J. S., & Jagadish, C. "Ion-beam-defect processes in group-III nitrides and ZnO. " Vacuum, 73.1 (2004):93-104.
[19] Karaseov, P. A., Kumar, A., Struchkov, A. I., Titov, A. I., Asokan, K., Kanjilal, D., & Tripathi, A. "Degradation of GaN Conductivity Under Irradiation with Swift Ions." International Youth Conference on Electronics, Telecommunications and Information Technologies: Proceedings of the YETI 2020, St. Petersburg, Russia. Springer International Publishing, 2021.
[20] Kucheyev, S. O., Boudinov, H., Williams, J. S., Jagadish, C., & Li, G. "Effect of irradiation temperature and ion flux on electrical isolation of GaN." Journal of applied physics 91.7 (2002): 4117-4120.
[21] Mensching, B., Liu, C., Rauschenbach, B., Kornitzer, K., & Ritter, W. "Characterization of Ca and C implanted GaN." Materials Science and Engineering: B 50.1-3 (1997): 105-108.
[22] Kumar, M. S., Sonia, G., Kanjilal, D., Dhanasekaran, R., & Kumar, J. "Electrical and optical isolation of GaN by high energy ion irradiation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 207.3 (2003): 308-313.
[23] Lv, L., Ma, J. G., Cao, Y. R., Zhang, J. C., Zhang, W., Li, L., Xu, S.R., Ma, X.H., Ren, X.T., & Hao, Y. "Study of proton irradiation effects on AlGaN/GaN high electron mobility transistors." Microelectronics Reliability 51.12 (2011): 2168-2172.
[24] Greenlee, J. D., Specht, P., Anderson, T. J., Koehler, A. D., Weaver, B. D., Luysberg, M., Dubon, O. D., Kub, F. J., Weatherford, T. R., Hobart, K. D. "Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs." Applied physics letters 107.8 (2015): 083504.
[25] Lee, L., Lee, W. C., Chung, H. M., Lee, M. C., Chen, W. H., Chen, W. K., & Lee, H. Y. "Characteristics of deep levels in As-implanted GaN films." Applied physics letters 81.10 (2002): 1812-1814.
[26] Chatterjee, A., Khamari, S. K., Porwal, S., Kher, S., & Sharma, T. K. "Effect of 60Co γ-irradiation on the nature of electronic transport in heavily doped n-type GaN based Schottky photodetectors." Journal of Applied Physics 123.16 (2018): 161585.
[27] Sakurai, H., Narita, T., Omori, M., Yamada, S., Koura, A., Iwinska, M., Kataoka, K., Horita, M., Ikarashi, N., Bockowski, M., Suda, J., & Kachi, T. "Redistribution of Mg and H atoms in Mg-implanted GaN through ultra-high-pressure annealing." Applied Physics Express 13.8 (2020): 086501.
[28] Feigelson, B. N., Anderson, T. J., Abraham, M., Freitas, J. A., Hite, J. K., Eddy, C. R., & Kub, F. J. "Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN." Journal of crystal growth 350.1 (2012): 21-26
[29] Anderson, T. J., Feigelson, B. N., Kub, F. J., Tadjer, M. J., Hobart, K. D., Mastro, M. A., Hite, J.K., & Eddy Jr, C. R. "Activation of Mg implanted in GaN by multicycle rapid thermal annealing." Electronics Letters 50.3 (2014): 197-198.
[30] Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., & Molnar, R. J. "Defect donor and acceptor in GaN." Physical review letters 79.12 (1997): 2273.
[31] Umana-Membreno, G. A., Dell, J. M., Parish, G., Nener, B. D., Faraone, L., Keller, S., & Mishra, U. K. "Annealing of C 60 o gamma radiation-induced damage in n-GaN Schottky barrier diodes." Journal of Applied Physics 101.5 (2007): 054511.
[32] Pearton, S. J., Deist, R., Ren, F., Liu, L., Polyakov, A. Y., & Kim, J. "Review of radiation damage in GaN-based materials and devices." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31.5 (2013): 050801.
[33] Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Kolin, N. G., Merkurisov, D. I., Boiko, V. M., Korulin, A. V., & Pearton, S. J. "Neutron transmutation doping effects in GaN." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28.3 (2010): 608-612.
[34] Brudnyi, V. N., Boiko, V. M., Kolin, N. G., Kosobutsky, A. V., Korulin, A. V., Brudnyi, P. A., Ermakov, V. S. "Neutron irradiation-induced modification of electrical and structural properties of GaN epifilms grown on Al2O3 (0001)substrate." Semiconductor Science and Technology 33.9 (2018): 095011.
[35] Pearton, S. J., Wilson, R. G., Zavada, J. M., Han, J., & Shul, R. J. "Thermal stability of 2 H-implanted n-and p-type GaN." Applied physics letters 73.13 (1998): 1877-1879
[36] Brudnyi, V. N., Verevkin, S. S., Govorkov, A. V., Ermakov, V. S., Kolin, N. G., Korulin, A. V., A. Ya. Polyakov, & Smirnov, N. B. "Electronic properties and deep traps in electron-irradiated n-GaN." Semiconductors 46 (2012): 433-439.
[37] Kucheyev, S. O., Williams, J. S., Jagadish, C., Zou, J., Li, G., & Titov, A. I. "Effect of ion species on the accumulation of ion-beam damage in GaN." Physical Review B 64.3 (2001): 035202
[38] Kucheyev, S. O., Williams, J. S., Zou, J., Jagadish, C., & Li, G. "Disordering and anomalous surface erosion of GaN during ion bombardment at elevated temperatures." Applied Physics Letters 78.10 (2001): 1373-1375.
[39] Wendler, E., Wesch, W., Azarov, A. Y., Catarino, N., Redondo-Cubero, A., Alves, E., Lorenz, K. "Comparison of low-and room-temperature damage formation in Ar ion implanted GaN and ZnO." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 307 (2013): 394-398.
[40] Kucheyev, S. O., Williams, J. S., Jagadish, C., Zou, J., Li, G. "Damage buildup in GaN under ion bombardment." Physical Review B 62.11 (2000): 7510.
[41] Liu, C., Mensching, B., Volz, K., Rauschenbach, B. "Lattice expansion of Ca and Ar ion implanted GaN." Applied physics letters 71.16 (1997): 2313-2315.
[42] Han, Y., Peng, J., Li, B., Wang, Z., Wei, K., Shen, T., Sun, J., Zhang, L., Yao. C., Gao, N., Gao, X., Pang, L., Zhu, Y., Chang, H., Cui, M., Luo, P., Sheng, Y., Zhang, H., Zhang, L., Fang, X., Zhao, S., Jin, J., Huang, Y., Liu, C., Tai, P., Wang, D., He, W. "Lattice disorder produced in GaN by He-ion implantation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 406 (2017): 543-547.
[43] Mendes, P., Lorenz, K., Alves, E., Schwaiger, S., Scholz, F., Magalhães, S. "Measuring strain caused by ion implantation in GaN." Materials Science in Semiconductor Processing 98 (2019): 95-99.
[44] Taube, A., Kamińska, E., Kozubal, M., Kaczmarski, J., Wojtasiak, W., Jasiński, J., Borysiewicz, M. A., Ekielski, M., Juchniewicz, M., Grochowski, J., Myśliwiec, M., Dynowska, E., Barcz, A., Prystawko, P., Zając, M., Kucharski, R., & Piotrowska, A. "Ion implantation for isolation of AlGaN/GaN HEMTs using C or Al." physica status solidi (a) 212.5 (2015): 1162-1169.
[45] Wang, Y. G., Zou, J., Kucheyev, S. O., Williams, J. S., Jagadish, C., Li, G. "Nature of planar defects in ion-implanted GaN." Electrochemical and solid-state letters 6.3 (2003): G34.
[46] Barbot, J. F., Pailloux, F., David, M. L., Pizzagalli, L., Oliviero, E., Lucas, G. "Helium implanted gallium nitride evidence of gas-filled rod-shaped cavity formation along the c-axis." Journal of Applied Physics 104.4 (2008): 043526.
[47] Li, B. S., Liu, H. P., Xu, L. J., Wang, J., Song, J., Peng, D. P., Li, J.H., Zhao, F.Q., Kang, L., Zhang, T.M., Tang, H.X., Xiong, A. L. "Lattice disorder and N elemental segregation in ion implanted GaN epilayer." Applied Surface Science 499 (2020): 143911.
[48] Liu, C., Wenzel, A., Volz, K., & Rauschenbach, B. "Influence of substrate temperature on damage buildup and removal of ion implanted gallium nitride." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 148.1-4 (1999): 396-400.
[49] Usov, I. O., Parikh, N. R., Thomson, D., & Davis, R. F. "Reverse-annealing phenomenon during the high-temperature implantation of Ar+ into GaN." MRS Online Proceedings Library (OPL) 693 (2001).
[50] Polyakov, A. Y., et al. "Fermi level pinning in heavily neutron-irradiated GaN." Journal of applied physics 100.9 (2006): 093715.
[51] Polenta, L., Fang, Z. Q., & Look, D. C. "On the main irradiation-induced defect in GaN." Applied Physics Letters 76.15 (2000): 2086-2088.
[52] Alfieri, G., Sundaramoorthy, V. K., Micheletto, R."Deep levels in ion implanted n-type homoepitaxial GaN: Ion mass, tilt angle and dose dependence." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 490 (2021): 39-42.
[53] Freitas Jr, J. A., Weaver, B. D., Koehler, A. D., Gallagher, J. C., Anderson, T. J. "Optical Investigation of Proton‐Irradiated Metal Organic Chemical Vapor Deposition AlGaN/GaN High‐Electron‐Mobility Transistor Structures." physica status solidi (b)257.4 (2020): 1900573.
[54] Pong, B. J., Pan, C. J., Teng, Y. C., Chi, G. C., Li, W. H., Lee, K. C., & Lee, C. H. "Structural defects and microstrain in GaN induced by Mg ion implantation." Journal of applied physics 83.11 (1998): 5992-5996.
[55] Katsikini, M., Arvanitidis, J., Ves, S., Paloura, E. C., Wendler, E., Wesch, W. "Indium implantation and annealing of GaN: Lattice damage and recovery." physica status solidi c 7.1 (2010): 36-39.
[56] Khanal, M. P., Uprety, S., Mirkhani, V., Wang, S., Yapabandara, K., Hassani, E., Isaacs-Smith, T., Ahyi, A. C., Bozack, M. J., Oh, T. S., Park, M."Impact of 100 keV proton irradiation on electronic and optical properties of AlGaN/GaN high electron mobility transistors (HEMTs)." Journal of Applied Physics 124.21 (2018): 215702.
[57] Liu, C., Schreck, M., Wenzel, A., Mensching, B., Rauschenbach, B. "Damage buildup and removal in Ca-ion-implanted GaN." Applied Physics A 70.1 (2000): 53-57.
[58] Li, B. S., Wang, Z. G. "Structures and optical properties of-implanted GaN epi-layers." Journal of Physics D: Applied Physics 48.22 (2015): 225101.
[59] Moisy, F., Sall, M., Grygiel, C., Balanzat, E., Boisserie, M., Lacroix, B., Simon, P., & Monnet, I. "Effects of electronic and nuclear stopping power on disorder induced in GaN under swift heavy ion irradiation." Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 381 (2016): 39-44.
[60] Katsikini, M., Arvanitidis, J., Paloura, E. C., Ves, S., Wendler, E., & Wesch, W. "Raman and X-ray absorption near-edge structure characterization of GaN implanted with O, Ar, Xe, Te and Au." Optical Materials 29.12 (2007): 1856-1860.
[61] Limmer, W., Ritter, W., Sauer, R., Mensching, B., Liu, C., Rauschenbach, B. "Raman scattering in ion-implanted GaN." Applied Physics Letters 72.20 (1998): 2589-2591.
[62] Barber, R., Nguyen, Q., Brockman, J., Gahl, J., & Kwon, J. "Thermal neutron transmutation doping of GaN semiconductors." Scientific Reports 10.1 (2020): 16295
[63] Sathish, N., Dhamodaran, S., Pathak, A. P., Krishna, M. G., Khan, S. A., Avasthi, D. K., Pandey, A., Muralidharan, R., Li, G., & Jagadish, C. "HRXRD, AFM and optical study of damage created by swift heavy ion irradiation in GaN epitaxial layers." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 256.1 (2007): 281-287.
[64] Ziegler, J. F., Biersack, J. P. "SRIM-2008, stopping power and range of ions in matter." (2008).
[65] Reshchikov, M. A. "Measurement and analysis of photoluminescence in GaN." Journal of Applied Physics 129.12 (2021): 121101.
[66] Mnatsakanov, T. T., Levinshtein, M. E., Pomortseva, L. I., Yurkov, S. N., Simin, G. S., Khan, M. A. "Carrier mobility model for GaN." Solid-State Electronics 47.1 (2003): 111-115.
[67] Look, D. C., & Molnar, R. J. "Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements." Applied Physics Letters 70.25 (1997): 3377-3379
(此全文20260615後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *