帳號:guest(3.16.67.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高睿駿
作者(外文):Kao, Jui-Chun
論文名稱(中文):利用脈衝式電鍍法製備應用於質子交換膜水電解器陰極的奈米結構鉑觸媒
論文名稱(外文):Preparation of Nanostructure Pt Cathode Catalysts for a PEMWE by Pulsed Electrodeposition Technique
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung-Kuang
口試委員(中文):王本誠
薛康琳
口試委員(外文):Wang, Pen-Cheng
Hsueh, Kan-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011536
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:81
中文關鍵詞:質子交換膜水電解器觸媒電化學沉積法產氫析氫反應
外文關鍵詞:Proton exchange membrane water electrolyzerPlatinumCatalystElectrochemical depositionHydrogen productionHydrogen evolution reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:214
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究採用脈衝式電鍍法將奈米結構鉑觸媒沉積於碳基材表面上,將其應用於質子交換膜水電解器之陰極,用以提升氫氣析出的反應活性。電鍍製程採用自終止電化學沉積法,即透過施加高還原電位,使氫原子吸附於已沉積之鉑表面上,防止鉑離子的持續還原;當循環到正電位時,鉑表面的氫原子發生脫附現象而使鉑觸媒得以在後續電位循環中再進一步進行沉積,藉此達成對觸媒承載量的精確控制。
實驗分為兩大部分,第一部分為探討電化學沉積觸媒製程參數最佳化: 調整(1)前驅物溶液之輔助電解質以及(2)脈衝沉積循環次數等參數,再透過在0.5 M硫酸溶液中進行循環伏安法和線性掃描伏安法作為電化學特性分析,並利用SEM、XRD以以及ICP-MS等儀器進行觸媒形貌、結晶性以及承載量之分析,找尋最佳觸媒製備參數。第二部分則為膜電極組製程參數最佳化,利用經過最佳化的奈米結構鉑觸媒作為質子交換膜水電解器的陰極,並調整(1)膜電極組組裝熱壓壓力以及(2)陰極Nafion®承載量,透過水電解器測試極化曲線中之比較獲得最佳製備條件。在水電解器測試中,自製觸媒展現了良好的產氫效能,並且其表現在高電流密度區域優於商用觸媒。
Nanostructured platinum catalysts were developed by pulsed potential electrodeposition technique and used as the cathode for the proton exchange membrane water electrolyzer(PEMWE) to enhance the hydrogen evolution reaction(HER) activity in this study. The electrodeposition process for controlling Pt loading precisely is based on the Self-Terminated Electrodeposition. By the adsorption of hydrogen on the deposited Pt surface at a high reduction potential, the deposition reaction of Pt is quenched. The layer-by-layer growth of Pt is deposited on the surface by periodic pulsed potentials.
The first part of this work is the optimization of the Pt electrodeposition process by adjusting the species of supporting electrolyte and the cycle number of periodic potentials. The electrochemical characteristics of the Pt catalysts were investigated via cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis in 0.5 M sulfuric acid solution. The morphologies, crystallinity, and mass loading of catalysts were measured by SEM, XRD, and ICP-MS. The second part is the optimization of the preparation process of membrane electrode assemblies (MEA). The platinum catalyst prepared by the electrodeposition process is used as the cathode of the proton exchange membrane water electrolyzer. By comparing the polarization curves of the electrolyzer test, we can obtain the optimized parameters of hot-pressing pressure and Nafion® loading at the cathode. In the water electrolyzer test, the homemade catalyst was demonstrated remarkable performance in hydrogen production. The performance was superior to that of commercial catalysts in the high current density region.
摘要 i
Abstract ii
總目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 基本原理與文獻回顧 4
2.1 水電解技術簡介 4
2.2 質子交換膜水電解結構 5
2.2.1 多孔傳輸層(Porous Transport Layer, PTL) 6
2.2.2 觸媒層(Catalyst Layer, CL) 8
2.2.3 質子交換膜(Proton Exchange Membrane) 11
2.2.4 雙極板(Bipolar Plate) 12
2.3 質子交換膜水電解器工作原理 15
2.4 水電解器極化損失 16
2.4.1 活性極化 17
2.4.2 歐姆極化 18
2.4.3 濃度極化 18
2.5 電化學分析 19
2.5.1 循環伏安法 20
2.5.2 線性掃描伏安法 24
2.6 質子交換膜水電解器半反應 25
2.6.1 陽極氧氣析出反應 25
2.6.2 陰極氫氣析出反應 27
2.7 電化學沉積法製備觸媒 29
2.7.1 定電位沉積法 29
2.7.2 脈衝式電鍍法 31
第三章 研究方法與實驗步驟 35
3.1實驗流程 35
3.2實驗藥品與設備 36
3.2.1實驗藥品與材料 36
3.2.2實驗設備 37
3.2.3 分析儀器 37
3.3 觸媒載體前處理 38
3.4電化學實驗裝置設計 39
3.5 電化學沉積法製備奈米結構鉑觸媒 40
3.6觸媒電化學特性分析 42
3.6.1循環伏安法(CV)測試 42
3.6.2 線性掃描伏安法(LSV)測試 42
3.7觸媒檢測及形貌分析 43
3.7.1 熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, FE-SEM) 43
3.7.2 X光粉末繞射儀(X-Ray Powder Diffractometer,XRPD) 44
3.7.3 感應耦合電漿分析儀 (Inductivity Coupled Plasma-Mass 46
Spectrometer, ICP-MS) 46
3.8 單水電解器測試(Single Cell Test) 47
3.8.1 液態Nafion®佈植 48
3.8.2 商用觸媒漿料配製與塗佈 48
3.8.3 膜電極組製備與組裝 49
第四章 結果與討論 52
4.1 實驗A: 輔助電解質對電化學沉積鉑觸媒之影響 52
4.1.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 53
4.1.2 X 光粉末繞射分析(XRD) 54
4.1.3 半電池電化學分析 55
4.2 實驗B: 電位循環次數對電化學沉積鉑觸媒之影響 57
4.2.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 58
4.2.2 半電池電化學分析 60
4.2.3 水電解器測試分析 63
4.3 實驗C: 膜電極組製備參數對水電解器性能之影響 64
4.3.1熱壓壓力對自製觸媒之膜電極組的影響 66
4.3.2 陰極Nafion®承載量對自製觸媒之膜電極組的影響 68
4.4 實驗D:電解器模組中氣密墊片厚度對電解效能之影響 69
4.5 自製觸媒與商用觸媒應用於水電解器之效能比較 71
第五章 結論 74
參考文獻 76
[1] (2021). Glasgow Climate Pact.
[2] 林匯凱(2022)。氫能發展趨勢,各國何去何從?。檢自https://findit.org.tw/researchPageV2.aspx?pageId=2001 (Jun. 17, 2022)。
[3] T. Capurso, M. Stefanizzi, M. Torresi, and S. M. Camporeale,” Perspective of the role of hydrogen in the 21st century energy transition”, Energy Conversion and Management, vol. 251, pp. 114898, 2022.
[4] S. Kumar and V. Himabindu,” Hydrogen production by PEM water electrolysis – A review”, Materials Science for Energy Technologies, vol. 2, no. 3, pp. 442-454, 2019.
[5] O. Pantani, E. Anxolabéhère-Mallart, A. Aukauloo, and P. Millet,” Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media”, Electrochemistry Communications, vol. 9, no.1, pp. 54-58, 2007.
[6] C. Hagelüken,” Recycling the Platinum Group Metals: A European Perspective”, Platinum Metals Review, vol. 56, no.1, pp. 29-35, 2012.
[7] 陳柏璋,「脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池」,國立清華大學工程與系統科學系,碩士論文,中華民國一〇五年。
[8] H. Kim, S. Choe, H. Park, J. H. Jang, S. H. Ahn, and S. K. Kim,” An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer”, Nanoscale, vol. 9, no. 48, pp. 19045-19049, 2017.
[9] T. Smolinka, H. Bergmann, J. Garche, and M. Kusnezoffd, Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis. Elsevier, 2021.
[10] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few,” Future cost and performance of water electrolysis: An expert elicitation study”, International Journal of Hydrogen Energy, vol. 42, no. 52, pp. 30470-30492, 2017.
[11] S. A. Grigoriev, P. Millet, S. A. Volobuev, and V. N. Fateeva,” Optimization of porous current collectors for PEM water electrolysers”, International Journal of Hydrogen Energy, vol. 34, no. 11, pp.4968-4973, 2009.
[12] T. L. Doan, H. E. Lee, S. S. H. Shah, M. Kim, C. H. Kim, H. S. Cho, and T. Kim,” A review of the porous transport layer in polymer electrolyte membrane water electrolysis”, International Journal of Energy Research, vol. 45, no. 10, pp. 14207-14220, 2021.
[13] M. H. Miles and M. A. Thomason,” Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies”, Journal of The Electrochemical Society, vol. 123, no. 10, pp. 1459-1461, 1976.
[14] M. Miles, E. Klaus, B. Gunn, J. Locker, W. Serafin, and S. Srinivasan,” The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80℃ in acid solutions”, Electrochimica Acta, vol. 23, no. 6, pp. 521-526, 1978.
[15] D. Galizzioli, F. Tantardini, and S. Trasatti,” Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes”, Journal of Applied Electrochemistry, vol. 4, no. 1, pp. 57-67, 1974.
[16] R. Kötz and S. Stucki,” Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media”, Electrochimica Acta, vol. 31, no. 10, pp. 1311-1316, 1986.
[17] S. Ardizzone, C. L. Bianchi, G. Cappelletti, M. Ionita, A. Minguzzi, S. Rondinini, and A. Vertova,” Composite ternary SnO2–IrO2–Ta2O5 oxide electrocatalysts”, Journal of Electroanalytical Chemistry, vol. 589, no. 1, pp. 160-166, 2006.
[18] H. Jeon, J. Joo, Y. Kwon, S. Uhm, and J. Lee,” Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells”, Journal of Power Sources, vol. 195, no. 18, pp. 5929-5933, 2010.
[19] Ming-Chi Tsai, Tsung-Kuang Yeh, and Chuen-Horng Tsai,” Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum–ruthenium nanoparticles prepared by pulsed electrodeposition”, International Journal of Hydrogen Energy, vol. 36, no.14, pp. 8261-8266, 2011.
[20] W. Xu and K. Scott,” The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance’’, International Journal of Hydrogen Energy, vol. 35, no. 21, pp. 12029-12037, 2010.
[21] R. Gloukhovski, V. Freger, and Y. Tsur,” Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: A beginner's guide”, Reviews in Chemical Engineering, vol. 34, no. 4, pp. 455-479, 2018.
[22] D. J. Kim, M. J. Jo, and S. Y. Nam,” A review of polymer–nanocomposite electrolyte membranes for fuel cell application”, Journal of Industrial and Engineering Chemistry, vol. 21, pp. 36-52, 2015.
[23] K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki,” Research Advances towards Low Cost, High Efficiency PEM Electrolysis’’, ECS Transactions, vol. 33, no. 1, p. 3, 2010.
[24] H. Y. Jung, S. Y. Huang, P. Ganesan, and B. N. Popov,” Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation”, Journal of Power Sources, vol. 194, no. 2, pp. 972-975, 2009.
[25] D. S. Falcao and A. M. F. R. Pinto,” A review on PEM electrolyzer modelling: Guidelines for beginners’’, Journal of Cleaner Production, vol. 261, p. 121184, 2020.
[26] S. Toghyani, S. Fakhradini, E. Afshari, E. Baniasadi, M. Y. A. Jamalabadi, and M. S. Shadloo,” Optimization of operating parameters of a polymer exchange membrane electrolyzer”, International Journal of Hydrogen Energy, vol. 44, no. 13, pp. 6403-6414, 2019.
[27] M. R. Gerhardt, L. M. Pant, J. C. Bui, A. R. Crothers, V. M. Ehlinger, J. C. Fornaciari, J. Liu, and A. Z. Weber,” Method—Practices and Pitfalls in Voltage Breakdown Analysis of Electrochemical Energy-Conversion Systems”, Journal of the Electrochemical Society, vol. 168, no. 7, p. 074503, 2021.
[28] A. Awasthi, K. Scott, and S.Basu,” Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production’’, International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 14779-14786, 2011.
[29] F. Marangio, M. Santarelli, M.Calì,” Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production’’, International Journal of Hydrogen Energy, vol. 34, no. 3, pp. 1143-1158, 2009.
[30] J. Wang, “Analytical Electrochemistry, 2nd Edition”, Wiley-VCH, New York, 2000.
[31] 郭豔如,「可拋棄式奈米白金碳墨修飾電極電化學偵測之研究」,國立交通大學應用化學系,碩士論文,中華民國九十八年。
[32] Linear Sweep and Cyclic Voltammetry: The Principles, Department of Chemical Engineering and Biotechnology, University of Cambridge. Retrieved from https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/linear-sweep-and-cyclic-voltametry-the-principles (Jun. 22, 2022).
[33] F. J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S. R. de Miguel, O. A. Scelza, and H. R. Corti, “Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods”, International Journal of Hydrogen Energy, vol. 34, no. 19, pp. 8193-8203, 2009.
[34] 謝逸凡,「鉑系觸媒與碳載體電極之電化學研究應用於直接甲醇燃料電池」,國立交通大學材料科學與工程學系,博士論文,中華民國九十九年。
[35] D. Bhalothia, S. P. Wang, S. Lin, C. Yan, K. W. Wang, and P. C. Chen, “Atomic Pt-clusters decoration triggers a high-rate performance on Ni@Pd bimetallic nanocatalyst for hydrogen evolution reaction in both alkaline and acidic medium’’, Applied Sciences, vol. 10, no. 15, p. 5155, 2020.
[36] Z. Chen, X. Duan,W. Wei, S.Wang, and B. J. Ni,’’ Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives’’, Nano Energy, vol. 78, p. 105392, 2020.
[37] Z. Shi, X. Wang, J. Ge, C. Liu, and W. Xing,” Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts’’, Nanoscale, vol. 12, no. 25, pp. 13249-13275, 2020.
[38] H. Jin, S. Choi, G. J. Bang, T. Kwon, H. S. Kim, S. J. Lee, Y. Hong, D. W. Lee, H. S. Park, Y. Jung, S. J. Yoo, and K. Lee,” Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation’’, Energy & Environmental Science, vol. 15, no. 3, pp. 1119-1130, 2022.
[39] 劉家瑞,「合成過渡金屬硫化物與碳材的複合材料及其在電化學產氫的應用」,東海大學化學研究所,碩士論文,中華民國一〇二年。
[40] A. B. Laursen, S. Kegnæs, S. Dahla, and I, Chorkendorffa,” Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution’’, Energy & Environmental Science, vol. 5, no. 2, pp. 5577-5591, 2012.
[41] B. S. Lee, H. Y. Park, I. Choi, M. K. Cho, H. J. Kim, S. J. Yoo, D. Henkensmeier, J. Y. Kim, S. W. Nam, S. Park, K. Y. Lee, and J. H. Jang,” Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature”, Journal of Power Sources, vol. 309, pp. 127-134, 2016.
[42] H. Park, S. Choe, H. Kim, D. K. Kim, G. Cho, Y. Park, J. H. Jang, D. H. Ha, S. H. Ahn, S. K. Kim,” Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis”, Applied Surface Science, vol. 444, pp. 303-311, 2018.
[43] Y. Shi, C. Lee, X. Tan, L. Yang, Q. Zhu, X. Loh, J. Xu, Q. Yan,” Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion”, small structures, vol. 3, no. 3, pp. 2100185, 2021.
[44] S. M. Ayyadurai, Y. S. Choi, P. Ganesan, S. P. Kumaraguru, and B. N. Popov, “Novel PEMFC cathodes prepared by pulse deposition”, Journal of The Electrochemical Society, vol. 154, no. 10, p. 1063, 2007.
[45] S. Baskaran (2010). Structure and regulation of yeast glycogen synthase (PhD dissertation). Department of Biochemistry and Molecular Biology, Indiana University, Indiana.
[46] R. Thomas, “A Beginner’s Guide to ICP-MS–Part I”, Spectroscopy, vol.16, no. 4, pp. 38-42, 2001.
[47] J. Mo, S. M. Steen III, and F.Y. Zhang,” X-ray diffraction studies on material corrosions in renewable energy storage electrolyzers”, Journal of Physics: Conference Series, vol. 548, p. 012061, 2014.
[48] W. Wang, K. Li, L. Ding, S. Yu, Z. Xie, D. A. Cullen, H. Yu, G. Bender, Z. Kang, J. A. Wrubel, Z. Ma, C. B. Capuano, A. Keane, K. Ayers, and F. Y. Zhang,” Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization”, ACS Applied Materials & Interfaces, vol. 14, no. 7, pp. 9002-9012, 2022.
[49] K. D. Baik, B. K. Hong, and M. S. Kim,” Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells”, Renewable Energy, vol. 57, pp. 234-239, 2013.
[50] Q. Meyer, N. Mansor, F. Iacoviello, P. L. Cullen, R, Jervis, D. Finegan, C. Tan, J. Bailey, P. R. Shearing, and D. J. L. Brett,” Investigation of Hot Pressed Polymer Electrolyte Fuel Cell Assemblies via X-ray Computed Tomography’’, Electrochimica Acta, vol. 242, pp. 125-136, 2017.
[51] H. Y. Jung and J.W. Kim,” Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC)”, International Journal of Hydrogen Energy, vol. 37, no. 17, pp. 12580-12585, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *