|
[1] (2021). Glasgow Climate Pact. [2] 林匯凱(2022)。氫能發展趨勢,各國何去何從?。檢自https://findit.org.tw/researchPageV2.aspx?pageId=2001 (Jun. 17, 2022)。 [3] T. Capurso, M. Stefanizzi, M. Torresi, and S. M. Camporeale,” Perspective of the role of hydrogen in the 21st century energy transition”, Energy Conversion and Management, vol. 251, pp. 114898, 2022. [4] S. Kumar and V. Himabindu,” Hydrogen production by PEM water electrolysis – A review”, Materials Science for Energy Technologies, vol. 2, no. 3, pp. 442-454, 2019. [5] O. Pantani, E. Anxolabéhère-Mallart, A. Aukauloo, and P. Millet,” Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media”, Electrochemistry Communications, vol. 9, no.1, pp. 54-58, 2007. [6] C. Hagelüken,” Recycling the Platinum Group Metals: A European Perspective”, Platinum Metals Review, vol. 56, no.1, pp. 29-35, 2012. [7] 陳柏璋,「脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池」,國立清華大學工程與系統科學系,碩士論文,中華民國一〇五年。 [8] H. Kim, S. Choe, H. Park, J. H. Jang, S. H. Ahn, and S. K. Kim,” An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer”, Nanoscale, vol. 9, no. 48, pp. 19045-19049, 2017. [9] T. Smolinka, H. Bergmann, J. Garche, and M. Kusnezoffd, Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis. Elsevier, 2021. [10] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few,” Future cost and performance of water electrolysis: An expert elicitation study”, International Journal of Hydrogen Energy, vol. 42, no. 52, pp. 30470-30492, 2017. [11] S. A. Grigoriev, P. Millet, S. A. Volobuev, and V. N. Fateeva,” Optimization of porous current collectors for PEM water electrolysers”, International Journal of Hydrogen Energy, vol. 34, no. 11, pp.4968-4973, 2009. [12] T. L. Doan, H. E. Lee, S. S. H. Shah, M. Kim, C. H. Kim, H. S. Cho, and T. Kim,” A review of the porous transport layer in polymer electrolyte membrane water electrolysis”, International Journal of Energy Research, vol. 45, no. 10, pp. 14207-14220, 2021. [13] M. H. Miles and M. A. Thomason,” Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies”, Journal of The Electrochemical Society, vol. 123, no. 10, pp. 1459-1461, 1976. [14] M. Miles, E. Klaus, B. Gunn, J. Locker, W. Serafin, and S. Srinivasan,” The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80℃ in acid solutions”, Electrochimica Acta, vol. 23, no. 6, pp. 521-526, 1978. [15] D. Galizzioli, F. Tantardini, and S. Trasatti,” Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes”, Journal of Applied Electrochemistry, vol. 4, no. 1, pp. 57-67, 1974. [16] R. Kötz and S. Stucki,” Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media”, Electrochimica Acta, vol. 31, no. 10, pp. 1311-1316, 1986. [17] S. Ardizzone, C. L. Bianchi, G. Cappelletti, M. Ionita, A. Minguzzi, S. Rondinini, and A. Vertova,” Composite ternary SnO2–IrO2–Ta2O5 oxide electrocatalysts”, Journal of Electroanalytical Chemistry, vol. 589, no. 1, pp. 160-166, 2006. [18] H. Jeon, J. Joo, Y. Kwon, S. Uhm, and J. Lee,” Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells”, Journal of Power Sources, vol. 195, no. 18, pp. 5929-5933, 2010. [19] Ming-Chi Tsai, Tsung-Kuang Yeh, and Chuen-Horng Tsai,” Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum–ruthenium nanoparticles prepared by pulsed electrodeposition”, International Journal of Hydrogen Energy, vol. 36, no.14, pp. 8261-8266, 2011. [20] W. Xu and K. Scott,” The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance’’, International Journal of Hydrogen Energy, vol. 35, no. 21, pp. 12029-12037, 2010. [21] R. Gloukhovski, V. Freger, and Y. Tsur,” Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: A beginner's guide”, Reviews in Chemical Engineering, vol. 34, no. 4, pp. 455-479, 2018. [22] D. J. Kim, M. J. Jo, and S. Y. Nam,” A review of polymer–nanocomposite electrolyte membranes for fuel cell application”, Journal of Industrial and Engineering Chemistry, vol. 21, pp. 36-52, 2015. [23] K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki,” Research Advances towards Low Cost, High Efficiency PEM Electrolysis’’, ECS Transactions, vol. 33, no. 1, p. 3, 2010. [24] H. Y. Jung, S. Y. Huang, P. Ganesan, and B. N. Popov,” Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation”, Journal of Power Sources, vol. 194, no. 2, pp. 972-975, 2009. [25] D. S. Falcao and A. M. F. R. Pinto,” A review on PEM electrolyzer modelling: Guidelines for beginners’’, Journal of Cleaner Production, vol. 261, p. 121184, 2020. [26] S. Toghyani, S. Fakhradini, E. Afshari, E. Baniasadi, M. Y. A. Jamalabadi, and M. S. Shadloo,” Optimization of operating parameters of a polymer exchange membrane electrolyzer”, International Journal of Hydrogen Energy, vol. 44, no. 13, pp. 6403-6414, 2019. [27] M. R. Gerhardt, L. M. Pant, J. C. Bui, A. R. Crothers, V. M. Ehlinger, J. C. Fornaciari, J. Liu, and A. Z. Weber,” Method—Practices and Pitfalls in Voltage Breakdown Analysis of Electrochemical Energy-Conversion Systems”, Journal of the Electrochemical Society, vol. 168, no. 7, p. 074503, 2021. [28] A. Awasthi, K. Scott, and S.Basu,” Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production’’, International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 14779-14786, 2011. [29] F. Marangio, M. Santarelli, M.Calì,” Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production’’, International Journal of Hydrogen Energy, vol. 34, no. 3, pp. 1143-1158, 2009. [30] J. Wang, “Analytical Electrochemistry, 2nd Edition”, Wiley-VCH, New York, 2000. [31] 郭豔如,「可拋棄式奈米白金碳墨修飾電極電化學偵測之研究」,國立交通大學應用化學系,碩士論文,中華民國九十八年。 [32] Linear Sweep and Cyclic Voltammetry: The Principles, Department of Chemical Engineering and Biotechnology, University of Cambridge. Retrieved from https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/linear-sweep-and-cyclic-voltametry-the-principles (Jun. 22, 2022). [33] F. J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S. R. de Miguel, O. A. Scelza, and H. R. Corti, “Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods”, International Journal of Hydrogen Energy, vol. 34, no. 19, pp. 8193-8203, 2009. [34] 謝逸凡,「鉑系觸媒與碳載體電極之電化學研究應用於直接甲醇燃料電池」,國立交通大學材料科學與工程學系,博士論文,中華民國九十九年。 [35] D. Bhalothia, S. P. Wang, S. Lin, C. Yan, K. W. Wang, and P. C. Chen, “Atomic Pt-clusters decoration triggers a high-rate performance on Ni@Pd bimetallic nanocatalyst for hydrogen evolution reaction in both alkaline and acidic medium’’, Applied Sciences, vol. 10, no. 15, p. 5155, 2020. [36] Z. Chen, X. Duan,W. Wei, S.Wang, and B. J. Ni,’’ Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives’’, Nano Energy, vol. 78, p. 105392, 2020. [37] Z. Shi, X. Wang, J. Ge, C. Liu, and W. Xing,” Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts’’, Nanoscale, vol. 12, no. 25, pp. 13249-13275, 2020. [38] H. Jin, S. Choi, G. J. Bang, T. Kwon, H. S. Kim, S. J. Lee, Y. Hong, D. W. Lee, H. S. Park, Y. Jung, S. J. Yoo, and K. Lee,” Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation’’, Energy & Environmental Science, vol. 15, no. 3, pp. 1119-1130, 2022. [39] 劉家瑞,「合成過渡金屬硫化物與碳材的複合材料及其在電化學產氫的應用」,東海大學化學研究所,碩士論文,中華民國一〇二年。 [40] A. B. Laursen, S. Kegnæs, S. Dahla, and I, Chorkendorffa,” Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution’’, Energy & Environmental Science, vol. 5, no. 2, pp. 5577-5591, 2012. [41] B. S. Lee, H. Y. Park, I. Choi, M. K. Cho, H. J. Kim, S. J. Yoo, D. Henkensmeier, J. Y. Kim, S. W. Nam, S. Park, K. Y. Lee, and J. H. Jang,” Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature”, Journal of Power Sources, vol. 309, pp. 127-134, 2016. [42] H. Park, S. Choe, H. Kim, D. K. Kim, G. Cho, Y. Park, J. H. Jang, D. H. Ha, S. H. Ahn, S. K. Kim,” Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis”, Applied Surface Science, vol. 444, pp. 303-311, 2018. [43] Y. Shi, C. Lee, X. Tan, L. Yang, Q. Zhu, X. Loh, J. Xu, Q. Yan,” Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion”, small structures, vol. 3, no. 3, pp. 2100185, 2021. [44] S. M. Ayyadurai, Y. S. Choi, P. Ganesan, S. P. Kumaraguru, and B. N. Popov, “Novel PEMFC cathodes prepared by pulse deposition”, Journal of The Electrochemical Society, vol. 154, no. 10, p. 1063, 2007. [45] S. Baskaran (2010). Structure and regulation of yeast glycogen synthase (PhD dissertation). Department of Biochemistry and Molecular Biology, Indiana University, Indiana. [46] R. Thomas, “A Beginner’s Guide to ICP-MS–Part I”, Spectroscopy, vol.16, no. 4, pp. 38-42, 2001. [47] J. Mo, S. M. Steen III, and F.Y. Zhang,” X-ray diffraction studies on material corrosions in renewable energy storage electrolyzers”, Journal of Physics: Conference Series, vol. 548, p. 012061, 2014. [48] W. Wang, K. Li, L. Ding, S. Yu, Z. Xie, D. A. Cullen, H. Yu, G. Bender, Z. Kang, J. A. Wrubel, Z. Ma, C. B. Capuano, A. Keane, K. Ayers, and F. Y. Zhang,” Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization”, ACS Applied Materials & Interfaces, vol. 14, no. 7, pp. 9002-9012, 2022. [49] K. D. Baik, B. K. Hong, and M. S. Kim,” Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells”, Renewable Energy, vol. 57, pp. 234-239, 2013. [50] Q. Meyer, N. Mansor, F. Iacoviello, P. L. Cullen, R, Jervis, D. Finegan, C. Tan, J. Bailey, P. R. Shearing, and D. J. L. Brett,” Investigation of Hot Pressed Polymer Electrolyte Fuel Cell Assemblies via X-ray Computed Tomography’’, Electrochimica Acta, vol. 242, pp. 125-136, 2017. [51] H. Y. Jung and J.W. Kim,” Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC)”, International Journal of Hydrogen Energy, vol. 37, no. 17, pp. 12580-12585, 2012.
|