帳號:guest(3.139.87.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱景淯
作者(外文):Chu, Ching-Yu
論文名稱(中文):開發共價鍵結磺酸根高分子材料於燃料電池膜電極組之應用
論文名稱(外文):Development of polymeric material functionalized with sulfonic groups and its application for membrane electrode assembly of fuel cell
指導教授(中文):王本誠
指導教授(外文):Wang, Pen-Cheng
口試委員(中文):蘇育全
葉宗洸
宋隆裕
口試委員(外文):Su, Yu-Chuan
Yeh, Tsung-Kuang
Sung, Lung-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011531
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:88
中文關鍵詞:磷酸燃料電池聚苯並咪唑膜質子交換膜燃料電池磺化聚苯胺離子聚合物
外文關鍵詞:Phosphoric acid fuel cellPolybenzimidazole membraneProton exchange membrane fuel cellNafionSulfonated polyanilineIonomer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究開發共價鍵結磺酸根高分子材料並應用於燃料電池的膜電極組中,其中包含磷酸燃料電池和質子交換膜燃料電池,主要目的皆為提升燃料電池之膜電極組的質子傳導能力,達到電池效能更進一步的目標。
在磷酸燃料電池研究的部分,藉由Diazonium反應,將磺酸根以共價鍵結的方式,接枝至聚苯並咪唑 (Polybenzimidazole, PBI) 膜上,使質子交換膜的質子傳導度更進一步的提升。在改質完PBI膜後,透過傅立葉紅外線光譜儀(FTIR)進行樣品檢測,確認改質後質子交換膜的鍵結,依此判斷改質實驗是否成功,並在後續的單電池測試中,得到高於商用PBI效率的516 mW/cm2。
近幾年許多國家也開始限制含氟化合物相關商品的出口,而質子交換膜燃料電池會使用到含氟的液態高分子電解質Liquid Nafion,因此本研究為開發出不含氟的磺化聚苯胺高分子來代替原本作為離子聚合物(Ionomer)的Liquid Nafion,並且以自製的Ionomer提高膜電極組的質子傳導度,透過增加三相區(觸媒-燃料-電解質)中的磺酸根密度,在使用自製磺化高分子的單電池測試中,成功測得比商用質子交換膜燃料電池還優秀的電池效率。
In order to improve the proton conductivity of the membrane electrode assembly (MEA), we develop the polymeric materials functionalized with sulfonic groups in this research. The application of the polymeric materials are for membrane electrode assemblies of the fuel cell, including Phosphoric Acid Fuel Cell (PAFC) and Proton Exchange Membrane Fuel Cell (PEMFC). By increasing the proton conductivity of the membrane electrode assemblies, the power density of the fuel cell can be improved.
The part of the phosphoric acid fuel cell research, the sulfonic groups were covalently bonded to the polybenzimidazole (PBI) membrane by the Diazonium reaction, which further improved the proton conductivity of the proton exchange membrane. After the modification of the PBI membrane, the samples were tested by Fourier transform infrared spectrometer (FTIR) to confirm the bonding of the modified proton exchange membrane. Based on this, it was judged whether the modification experiment was successful. In the single fuel cell test, the maximum power density with modified PBI membrane is 516 mW/cm2 which is higher than the commercial phosphoric acid fuel cell.
In recent years, many countries have restricted the export about fluorine-containing compounds. However, the Liquid Nafion as liquid polymeric electrolyte (also called Ionomer) plays an important role in the proton exchange membrane fuel cell. The experiment develops the sulfonated polyaniline (SPANI) which is not only fluorine-free to replace Liquid Nafion as ionomer originally, but also applied in MEA of the PEMFC to improve the proton conductivity. The higher the sulfonated group density in the three phase zone (Catalyst-Fuel-Electrolyte), the better the fuel cell power density. Successfully, the single fuel cell test with homemade sulfonated polymer got the better performance than the commercial proton exchange membrane fuel cell.
摘要-------------------------------i
Abstract---------------------------ii
致謝-------------------------------iv
總目錄-----------------------------v
圖目錄-----------------------------ix
表目錄-----------------------------xii
第 一 章 緒論-----------------------1
第 二 章 基本原理與文獻回顧----------4
第 三 章 實驗方法-------------------32
第 四 章 結果與討論-----------------56
第 五 章 結論-----------------------81
第 六 章 未來工作-------------------83
第 七 章 參考文獻-------------------85

1. Jiao, K., et al., Designing the next generation of proton-exchange membrane fuel cells. Nature, 2021. 595(7867): p. 361-369.
2. Thounthong, P., B. Davat, and S. Rael, Drive friendly. IEEE Power and Energy Magazine, 2007. 6(1): p. 69-76.
3. Das, S.K., A. Reis, and K. Berry, Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell. Journal of Power Sources, 2009. 193(2): p. 691-698.
4. Jakobsen, M.T.D., et al., Durability issues and status of PBI-based fuel cells, in High Temperature Polymer Electrolyte Membrane Fuel Cells. 2016, Springer. p. 487-509.
5. Kirubakaran, A., S. Jain, and R. Nema, A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 2009. 13(9): p. 2430-2440.
6. Wang, Y., C.-Y. Wang, and K. Chen, Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 2007. 52(12): p. 3965-3975.
7. Stamenkovic, V.R., et al., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature materials, 2007. 6(3): p. 241-247.
8. Poojary, S., et al., Transport and electrochemical interface properties of ionomers in Low-Pt loading catalyst layers: effect of ionomer equivalent weight and relative humidity. Molecules, 2020. 25(15): p. 3387.
9. Ren, H., et al., Ionomer network of catalyst layers for proton exchange membrane fuel cell. Journal of Power Sources, 2021. 506: p. 230186.
10. Haubold, H.-G., et al., Nano structure of NAFION: a SAXS study. Electrochimica Acta, 2001. 46(10-11): p. 1559-1563.
11. Zaidi, S.J., et al., Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science, 2000. 173(1): p. 17-34.
12. Miyatake, K., et al., Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. Journal of the American Chemical Society, 2007. 129(13): p. 3879-3887.
13. Yin, Y., et al., Synthesis and properties of highly sulfonated proton conducting polyimides from bis (3-sulfopropoxy) benzidine diamines. Journal of materials chemistry, 2004. 14(6): p. 1062-1070.
14. Wu, S., et al., The direct synthesis of wholly aromatic poly (p-phenylene) s bearing sulfobenzoyl side groups as proton exchange membranes. Polymer, 2006. 47(20): p. 6993-7000.
15. Dicks, A.L. and D.A. Rand, Fuel cell systems explained. 2018: John Wiley & Sons.
16. Zeis, R., Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein journal of nanotechnology, 2015. 6(1): p. 68-83.
17. He, R., et al., Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 2003. 226(1-2): p. 169-184.
18. Zuo, Z., Y. Fu, and A. Manthiram, Novel blend membranes based on acid-base interactions for fuel cells. Polymers, 2012. 4(4): p. 1627-1644.
19. Genies, E., et al., Polyaniline: A historical survey. Synthetic metals, 1990. 36(2): p. 139-182.
20. Matters, M., et al., Organic field-effect transistors and all-polymer integrated circuits. Optical Materials, 1999. 12(2-3): p. 189-197.
21. Huang, W.-S., B.D. Humphrey, and A.G. MacDiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986. 82(8): p. 2385-2400.
22. Wei, X.-L., et al., Synthesis and physical properties of highly sulfonated polyaniline. Journal of the American Chemical Society, 1996. 118(11): p. 2545-2555.
23. Wei, X. and A.J. Epstein, Synthesis of highly sulfonated polyaniline. Synthetic metals, 1995. 74(2): p. 123-125.
24. Chen, S.-A. and G.-W. Hwang, Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film. Macromolecules, 1996. 29(11): p. 3950-3955.
25. Barbir, F., PEM fuel cells: theory and practice. 2012: Academic press.
26. Jouin, M., et al., Prognostics and Health Management of PEMFC–State of the art and remaining challenges. International Journal of Hydrogen Energy, 2013. 38(35): p. 15307-15317.
27. Lisdat, F. and D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing. Analytical and bioanalytical chemistry, 2008. 391(5): p. 1555-1567.
28. Wang, J. and J. Schultze, Analytical electrochemistry. Angewandte Chemie-English Edition, 1996. 35(17): p. 1998-1998.
29. Wang, X., et al., Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers. Applied Surface Science, 2020. 510: p. 145400.
30. Suter, T.A., et al., Engineering Catalyst Layers for Next‐Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods. Advanced Energy Materials, 2021. 11(37): p. 2101025.
31. Mo, F., et al., Recent development of aryl diazonium chemistry for the derivatization of aromatic compounds. Chemical Reviews, 2021. 121(10): p. 5741-5829.
32. Wu, T., et al., Building tailored interfaces through covalent coupling reactions at layers grafted from aryldiazonium salts. ACS Applied Materials & Interfaces, 2021. 13(10): p. 11545-11570.
33. Pfrang, A., D. Veyret, and G. Tsotridis, Computation of thermal conductivity of gas diffusion layers of PEM fuel cells. Convection and Conduction Heat Transfer, 2011. 10: p. 232-215.
34. Haque, M.A., Physiochemical Characteristics of Solid Electrolyte Membranes for High-Temperature PEM Fuel Cell. International Journal of Electrochemical Science, 2019. 14: p. 371-386.
35. Kerres, J.A., D. Xing, and F. Schönberger, Comparative investigation of novel PBI blend ionomer membranes from nonfluorinated and partially fluorinated poly arylene ethers. Journal of Polymer Science Part B: Polymer Physics, 2006. 44(16): p. 2311-2326.
36. Wang, P.-C., et al., Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media. Reactive and Functional Polymers, 2009. 69(4): p. 217-223.
37. Lee, H., et al., Development of 1 kW class polymer electrolyte membrane fuel cell power generation system. Journal of Power Sources, 2002. 107(1): p. 110-119.
38. Ayyadurai, S.M., et al., Novel PEMFC cathodes prepared by pulse deposition. Journal of the Electrochemical Society, 2007. 154(10): p. B1063.
39. Nores-Pondal, F.J., et al., Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods. international journal of hydrogen energy, 2009. 34(19): p. 8193-8203.
40. 謝逸凡, 吳樸偉, and 林鵬, 鉑系觸媒與碳載體電極之電化學研究應用於直接甲醇燃料電池. 2010, 新竹市 國立交通大學.
41. Xu, H., et al., Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 2007. 48(19): p. 5556-5564.
42. Kang, Y., et al., Sulfonated graphene oxide incorporated thin film nanocomposite nanofiltration membrane to enhance permeation and antifouling properties. Desalination, 2019. 470: p. 114125.
43. Lou, W.-Y., M.-H. Zong, and Z.-Q. Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource technology, 2008. 99(18): p. 8752-8758.
44. Bhadra, S., N.H. Kim, and J.H. Lee, Synthesis of water soluble sulfonated polyaniline and determination of crystal structure. Journal of applied polymer science, 2010. 117(4): p. 2025-2035.
45. Du, P., et al., In situ polymerization of sulfonated polyaniline in layered double hydroxide host matrix for corrosion protection. New Journal of Chemistry, 2018. 42(6): p. 4201-4209.
46. Mu, S. and M. Tian, Optimization of perfluorosulfonic acid ionomer loadings in catalyst layers of proton exchange membrane fuel cells. Electrochimica acta, 2012. 60: p. 437-442.
47. 陳冠儒, 開發共價鍵結膦酸根之聚苯並咪唑膜並應用於磷酸燃料電池. 2021, 新竹市 國立清華大學.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *