|
1. Whittaker, D.H., Beyond secular stagnation: A digital and green economy? The Japanese Political Economy, 2021. 47(4): p. 365-386. 2. 黃繼葦, 台灣氫能儲存產業之策略性評估, in 科技管理研究所. 國立交通大學: 新竹市. p. 99. 3. Peschka, W., Hydrogen combustion in tomorrow's energy technology. International Journal of Hydrogen Energy, 1987. 12(7): p. 481-499. 4. Larminie, J., A. Dicks, and M.S. McDonald, Fuel cell systems explained. Vol. 2. 2003: J. Wiley Chichester, UK. 5. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel cells: principles, types, fuels, and applications. ChemPhysChem, 2000. 1(4): p. 162-193. 6. Zhang, J., et al., PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C. Journal of Power Sources, 2006. 163(1): p. 532-537. 7. Sammes, N., R. Bove, and K. Stahl, Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science, 2004. 8(5): p. 372-378. 8. Kamaruddin, M.Z.F., et al., An overview of fuel management in direct methanol fuel cells. Renewable and Sustainable Energy Reviews, 2013. 24: p. 557-565. 9. Palo, D.R., R.A. Dagle, and J.D. Holladay, Methanol steam reforming for hydrogen production. Chemical Reviews, 2007. 107(10): p. 3992-4021. 10. Lamy, C., J.-M. Leger, and S. Srinivasan, Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-first Century Emerging Technology. 2006. p. 53-118. 11. Heinzel, A. and V.M. Barragán, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 1999. 84(1): p. 70-74. 12. Wang, H.-S., et al., A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC). Energy, 2017. 133: p. 1142-1152. 13. Avgouropoulos, G., J. Papavasiliou, and T. Ioannides, Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts. Chemical Engineering Journal, 2009. 154(1): p. 274-280. 14. Lindström, B. and L.J. Pettersson, Development of a methanol fuelled reformer for fuel cell applications. Journal of Power Sources, 2003. 118(1): p. 71-78. 15. Rozovskii, A.Y. and G.I. Lin, Fundamentals of Methanol Synthesis and Decomposition. Topics in Catalysis, 2003. 22(3): p. 137-150. 16. Matsumura, Y., et al., Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica. Journal of Molecular Catalysis A: Chemical, 2000. 152(1): p. 157-165. 17. Cheng, W.-H., Development of Methanol Decomposition Catalysts for Production of H2 and CO. Accounts of Chemical Research, 1999. 32(8): p. 685-691. 18. Huang, T.-j. and S.-W. Wang, Hydrogen production via partial oxidation of methanol over copper-zinc catalysts. Applied Catalysis, 1986. 24(1): p. 287-297. 19. Alejo, L., et al., Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts. Applied Catalysis A: General, 1997. 162(1): p. 281-297. 20. Iulianelli, A., et al., Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renewable and Sustainable Energy Reviews, 2014. 29: p. 355-368. 21. Shen, J.-P. and C. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells. Catalysis Today, 2002. 77: p. 89-98. 22. Amphlett, J.C., et al., Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 1994. 19(2): p. 131-137. 23. Velu, S., K. Suzuki, and T. Osaki, Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells. Chemical Communications, 1999(23): p. 2341-2342. 24. Velu, S., et al., Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation. Journal of Catalysis, 2000. 194(2): p. 373-384. 25. Haruta, M. and H. Sano, Catalytic combustion of hydrogen I—Its role in hydrogen utilization system and screening of catalyst materials. International Journal of Hydrogen Energy, 1981. 6(6): p. 601-608. 26. Markatou, P., L.D. Pfefferle, and M.D. Smooke, A computational study of methane-air combustion over heated catalytic and non-catalytic surfaces. Combustion and Flame, 1993. 93(1): p. 185-201. 27. Verhelst, S., Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy, 2014. 39(2): p. 1071-1085. 28. Kim, T., Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell. International Journal of Hydrogen Energy, 2009. 34(16): p. 6790-6798. 29. Pan, C., et al., Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources, 2005. 145(2): p. 392-398. 30. Monyanon, S., A. Luengnaruemitchai, and S. Pongstabodee, Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments. Fuel Processing Technology, 2012. 96: p. 160-168. 31. Thattarathody, R., et al., Pressure, Diffusion, and S/M Ratio Effects in Methanol Steam Reforming Kinetics. Industrial & Engineering Chemistry Research, 2018. 57. 32. Jiang, C.J., et al., Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Applied Catalysis A: General, 1993. 97(2): p. 145-158. 33. Velu, S., et al., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. Applied Catalysis A: General, 2001. 213(1): p. 47-63. 34. Lindström, B. and L.J. Pettersson, Deactivation of copper-based catalysts for fuel cell applications. Catalysis Letters, 2001. 74(1): p. 27-30. 35. Holladay, J.D., et al., High efficiency and low carbon monoxide micro-scale methanol processors. Journal of Power Sources, 2004. 131(1): p. 69-72. 36. Wang, H.-S., et al., A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield. Applied Energy, 2015. 138: p. 21-30. 37. Tang, R., J. Greenwood, and P. Erickson, Modeling of a fixed-bed copper-based catalyst for reforming methanol: Steam and autothermal reformation. International Journal of Hydrogen Energy, 2015. 40. 38. Udani, P., et al., Steam reforming and oxidative steam reforming of methanol over CuO–CeO 2 catalysts. international journal of hydrogen energy, 2009. 34(18): p. 7648-7655. 39. Kniep, B.L., et al., Rational design of nanostructured copper–zinc oxide catalysts for the steam reforming of methanol. Angewandte Chemie International Edition, 2004. 43(1): p. 112-115. 40. Oguchi, H., et al., Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Applied Catalysis A: General, 2005. 281(1): p. 69-73. 41. Waugh, K.C., Methanol Synthesis. Catalysis Today, 1992. 15(1): p. 51-75. 42. Conner Jr, W.C. and J.L. Falconer, Spillover in heterogeneous catalysis. Chemical reviews, 1995. 95(3): p. 759-788. 43. Ritzkopf, I., et al., Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique. Applied Catalysis A: General, 2006. 302(2): p. 215-223. 44. Matsumura, Y. and H. Ishibe, Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen. Journal of Molecular Catalysis A: Chemical, 2011. 345(1): p. 44-53. 45. Patel, S. and K.K. Pant, Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol. Journal of Power Sources, 2006. 159(1): p. 139-143. 46. Cubeiro, M.L. and J.L.G. Fierro, Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A: General, 1998. 168(2): p. 307-322. 47. Sá, S., et al., Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental, 2010. 99(1): p. 43-57. 48. Richards, N.O. and P.A. Erickson, An investigation of a stratified catalyst bed for small-scale hydrogen production from methanol autothermal reforming. International Journal of Hydrogen Energy, 2014. 39(31): p. 18077-18083. 49. Zhao, C.Y., W. Lu, and Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 2010. 84(8): p. 1402-1412. 50. Chen, H., et al., Assessment and optimization of the mass-transfer limitation in a metal foam methanol microreformer. Applied Catalysis A: General, 2008. 337(2): p. 155-162. 51. Zhou, W., et al., Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity. International Journal of Hydrogen Energy, 2015. 40(1): p. 244-255. 52. Chen, H.-Y., F.-G. Tseng, and C. Pan, Drying capability of rmfc micro-channel evaporator with improved flow distribution, gas venting manifold and artificial cavities, in 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019). 2019, Chemical and Biological Microsystems Society. p. 1466-1467. 53. Wang, H.H.F., et al., Design of compact methanol reformer for hydrogen with low CO for the fuel cell power generation. International Journal of Hydrogen Energy, 2012. 37(9): p. 7487-7496. 54. Summers, P., et al., Overview of aluminum alloy mechanical properties during and after fires. Fire Science Reviews, 2015. 4. 55. Conant, T., et al., Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. Journal of Catalysis, 2008. 257(1): p. 64-70.
|