帳號:guest(18.118.162.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱暐宸
作者(外文):Chiu, Wei-Chen
論文名稱(中文):千瓦等級甲醇蒸氣重組器系統之整合與優化
論文名稱(外文):Optimization of the system of thousand watt level hydrogen production methanol reformer combine with hydrogen combustor
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):王本誠
陳冠宏
口試委員(外文):Wang, Pen-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011521
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:60
中文關鍵詞:甲醇蒸氣重組系統氣時空速輕量化燃燒器長效性能
外文關鍵詞:methanol steam reformer systemGHSVlight weightcombustorlong-term performance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:224
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究是為了解決行動式燃料電池系統的重量與長效使用的問題,系統整體重量來源主要是來自儲存氫氣的鋼瓶,因此使用重組反應產氫可以大幅降低重量,甲醇重組產氫反應是一個用液態甲醇產生氫氣的反應,可以廉價且大量的的產生氫氣。甲醇蒸氣重組反應(SRM)相比甲醇部分氧化反應(POM)的優勢為更大的產氫量和較低濃度的一氧化碳產量,其短版為較高的工作溫度和 SRM 為吸熱反應,為此需添加額外的加熱裝置。故團隊設計一個利用燃料電池尾端的廢氣來做為燃料的燃燒器提供熱能,藉由此種設計可以獲得更高的效率,同時也減少氣體的浪費。
重組反應器的設計是以流體阻力(flow resistance)來做為固定床反應器流道設計的思考重點,目的是為使流體能確實均勻地分配至每一流道藉以提升面積使用率和穩定流場 ,加上調整觸媒放置的方法來調整孔隙率和加入金屬來提升整體觸媒溫度的均勻度,藉此使觸媒的機械性和熱性去活化的問題大幅感善,可以使反應更加完整,同時長效的表現更加優異。觸媒擺放實驗是以十瓦等級重組器來進行,實驗結果顯示添加2克觸媒與水混合的填充方式在250 °C時的轉換率高達96.5%,且一氧化碳濃度趨近於0.4%,此種氣體的一氧化碳濃度是磷酸燃料電池可以承受的一氧化碳毒化,故不須再裝置其他過濾裝置,而且此種方法也可以有效地進行放大並有效的控制孔隙率,因此依此作為千瓦重組器的設計根本,依照GHSV來決定反映所需要的區域,並藉此達成有效放大後的結果。千瓦等級重組器在250 °C、觸媒重量為10克甲醇水溶液為1ml/min時其GHSV為9252ml/(g*h)時有最好的表現,其轉換率為97.3%,並依此配置進行等比例的放大到可以產生10000sccm的氫氣,來達成千瓦磷酸燃料電池的所需氣體量,結果發現在提供10ml/min的甲醇水溶液時可以產生10000sccm的氫氣,接下來進行18小時的長效實驗,失活百分比僅為0.522%。
The purpose of this study is to solve the difficulty of storage and transportation of hydrogen used in fuel cells. Methanol steam reforming hydrogen production reaction is a reaction in which liquid methanol is used to produce hydrogen. Compared with partial oxidation of methanol (POM), methanol steam reforming (SRM) has the advantages of higher hydrogen production and lower concentration of carbon monoxide production. The shorter version of SRM has higher operating temperature and SRM is endothermic reaction, so additional heating device is needed. The research team designed a burner that uses the exhaust gas at the end of the fuel cell as the fuel to provide heat, which is a design that would achieve greater efficiency and reduce the amount of gas wasted.
The design of the recombination reactor takes the fluid resistance (flow resistance) as the focus of the design of the flow channel of the fixed bed reactor, the purpose is to ensure that the fluid can be distributed evenly to each flow channel to improve the area utilization rate and stabilize the flow field. Plus the method of adjusting the placement of the catalyst to adjust the porosity and adding metal to improve the uniformity of the overall catalyst temperature, thereby greatly improving the mechanical and thermal deactivation of the catalyst, which can make the reaction more complete, At the same time, the long-term performance is better. The experimental results showed that the filling method of adding 2 grams of catalyst mixed with water had a conversion rate of up to 96.5% at 250 °C, and the carbon monoxide concentration approached 0.4%. The carbon monoxide concentration of this gas is the carbon monoxide poisoning that the phosphoric acid fuel cell can withstand. The design is fundamental, according to the GHSV to determine the area needed to reflect, and thereby achieve effective zoomed-in results. The kilowatt-class reformer has the best performance at 250 °C with a GHSV of 9252ml/(g*h) and a conversion rate of 97.3% when the catalyst weight is 10g of methanol in water at 1ml/min, and configured accordingly It was scaled up to generate 10,000 sccm of hydrogen to achieve the required gas volume of a kilowatt phosphoric acid fuel cell. It was found that 10,000 sccm of hydrogen could be generated when 10 ml/min of methanol aqueous solution was provided, and then a long-term experiment was carried out for 18 hours. , the inactivation percentage is only 0.522%.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 氫能 4
1-3 燃料電池的發展與簡介 5
1-4 甲醇重組器介紹 9
1-4-1 甲醇優點 9
1-4-2 甲醇重組產氫方式 10
1-5 觸媒式氫氣燃燒器簡介 14
1-5-1 燃燒器優缺點 14
1-6 蒸發器簡介 15
1-7 研究動機 15
第二章 文獻回顧 17
2-1 重組器與燃燒器整合的例子 17
2-2 甲醇蒸氣重組反應 20
2-3 甲醇重組器之觸媒 22
2-3-1 銅 23
2-3-2 銅/鋅 23
2-3-3 鋯 23
2-3-4鈰 24
2-3-5 鈀 24
2-3-6 已商業化之重組器觸媒 24
2-4 甲醇重組器之熱分佈性質 25
2-5 蒸發器設計 28
第三章 實驗設計與規劃 29
3-1實驗藥品 29
3-2實驗器材 29
3-3實驗儀器 30
3-3-1 GC氣相層析儀 30
3-3-2 SEM 31
3-3-3 數據擷取裝置:Yokogawa-MX 100 32
3-3-4 蠕動式幫浦:Yotec, PL102 32
3-4 實驗設計及架設 33
3-4--1重組器之設計與架構 33
3-4-1-1甲醇重組系統之計算與設計 34
3-4-2重組器之實驗設計 35
3-4-2-1整體系統實驗設計 35
3-4-2-2觸媒機制 36
3-4-2-3重組器之觸媒配置 36
3-4-2-4重組器之觸媒最佳反應參數測試 37
3-4-2-5重組器之環形幸運草流道 37
3-4-2-6重組器之效能與長效性 37
3-4-2-7重組合併燃燒器設計 38
3-4-2-8蒸發器之流道 40
3-5實驗方法 41
3-5-1重組器之性能測試流程 41
3-5-2重組器之觸媒擺放測試 42
3-5-3放大型蒸發器效能測試 42
3-5-4放大型重組器性能測試 43
3-5-5放大型重組器長效測試 43
3-6數值模擬 43
3-6-1邊界條件 44
3-6-2統御方程式 44
3-7製造選材 45
第四章 實驗結果與討論 46
4-1 十瓦重組器性能測試 46
4-2 千瓦重組器設計 47
4-2-1新舊型重組器模擬結果 47
4-2-2千瓦重組器GHSV測試 48
4-3 千瓦重組器系統性能測試 49
4-3-1千瓦等級蒸發器測試 49
4-3-2千瓦等級重組器產氫測試 50
4-3-3 環形幸運草重組器長效測試 51
4-4長效反應後觸媒分析 52
4-4-1 SEM分析 52
4-5觸媒與觸媒床熱傳 53
4-5-1 熱傳模擬 53
4-5-2 熱效率分析 54
第五章 結論 55
第六章 未來工作 56
第七章 參考文獻 57
1. Whittaker, D.H., Beyond secular stagnation: A digital and green economy? The Japanese Political Economy, 2021. 47(4): p. 365-386.
2. 黃繼葦, 台灣氫能儲存產業之策略性評估, in 科技管理研究所. 國立交通大學: 新竹市. p. 99.
3. Peschka, W., Hydrogen combustion in tomorrow's energy technology. International Journal of Hydrogen Energy, 1987. 12(7): p. 481-499.
4. Larminie, J., A. Dicks, and M.S. McDonald, Fuel cell systems explained. Vol. 2. 2003: J. Wiley Chichester, UK.
5. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel cells: principles, types, fuels, and applications. ChemPhysChem, 2000. 1(4): p. 162-193.
6. Zhang, J., et al., PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C. Journal of Power Sources, 2006. 163(1): p. 532-537.
7. Sammes, N., R. Bove, and K. Stahl, Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science, 2004. 8(5): p. 372-378.
8. Kamaruddin, M.Z.F., et al., An overview of fuel management in direct methanol fuel cells. Renewable and Sustainable Energy Reviews, 2013. 24: p. 557-565.
9. Palo, D.R., R.A. Dagle, and J.D. Holladay, Methanol steam reforming for hydrogen production. Chemical Reviews, 2007. 107(10): p. 3992-4021.
10. Lamy, C., J.-M. Leger, and S. Srinivasan, Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-first Century Emerging Technology. 2006. p. 53-118.
11. Heinzel, A. and V.M. Barragán, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 1999. 84(1): p. 70-74.
12. Wang, H.-S., et al., A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC). Energy, 2017. 133: p. 1142-1152.
13. Avgouropoulos, G., J. Papavasiliou, and T. Ioannides, Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts. Chemical Engineering Journal, 2009. 154(1): p. 274-280.
14. Lindström, B. and L.J. Pettersson, Development of a methanol fuelled reformer for fuel cell applications. Journal of Power Sources, 2003. 118(1): p. 71-78.
15. Rozovskii, A.Y. and G.I. Lin, Fundamentals of Methanol Synthesis and Decomposition. Topics in Catalysis, 2003. 22(3): p. 137-150.
16. Matsumura, Y., et al., Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica. Journal of Molecular Catalysis A: Chemical, 2000. 152(1): p. 157-165.
17. Cheng, W.-H., Development of Methanol Decomposition Catalysts for Production of H2 and CO. Accounts of Chemical Research, 1999. 32(8): p. 685-691.
18. Huang, T.-j. and S.-W. Wang, Hydrogen production via partial oxidation of methanol over copper-zinc catalysts. Applied Catalysis, 1986. 24(1): p. 287-297.
19. Alejo, L., et al., Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts. Applied Catalysis A: General, 1997. 162(1): p. 281-297.
20. Iulianelli, A., et al., Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renewable and Sustainable Energy Reviews, 2014. 29: p. 355-368.
21. Shen, J.-P. and C. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells. Catalysis Today, 2002. 77: p. 89-98.
22. Amphlett, J.C., et al., Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 1994. 19(2): p. 131-137.
23. Velu, S., K. Suzuki, and T. Osaki, Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells. Chemical Communications, 1999(23): p. 2341-2342.
24. Velu, S., et al., Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation. Journal of Catalysis, 2000. 194(2): p. 373-384.
25. Haruta, M. and H. Sano, Catalytic combustion of hydrogen I—Its role in hydrogen utilization system and screening of catalyst materials. International Journal of Hydrogen Energy, 1981. 6(6): p. 601-608.
26. Markatou, P., L.D. Pfefferle, and M.D. Smooke, A computational study of methane-air combustion over heated catalytic and non-catalytic surfaces. Combustion and Flame, 1993. 93(1): p. 185-201.
27. Verhelst, S., Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy, 2014. 39(2): p. 1071-1085.
28. Kim, T., Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell. International Journal of Hydrogen Energy, 2009. 34(16): p. 6790-6798.
29. Pan, C., et al., Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources, 2005. 145(2): p. 392-398.
30. Monyanon, S., A. Luengnaruemitchai, and S. Pongstabodee, Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments. Fuel Processing Technology, 2012. 96: p. 160-168.
31. Thattarathody, R., et al., Pressure, Diffusion, and S/M Ratio Effects in Methanol Steam Reforming Kinetics. Industrial & Engineering Chemistry Research, 2018. 57.
32. Jiang, C.J., et al., Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Applied Catalysis A: General, 1993. 97(2): p. 145-158.
33. Velu, S., et al., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. Applied Catalysis A: General, 2001. 213(1): p. 47-63.
34. Lindström, B. and L.J. Pettersson, Deactivation of copper-based catalysts for fuel cell applications. Catalysis Letters, 2001. 74(1): p. 27-30.
35. Holladay, J.D., et al., High efficiency and low carbon monoxide micro-scale methanol processors. Journal of Power Sources, 2004. 131(1): p. 69-72.
36. Wang, H.-S., et al., A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield. Applied Energy, 2015. 138: p. 21-30.
37. Tang, R., J. Greenwood, and P. Erickson, Modeling of a fixed-bed copper-based catalyst for reforming methanol: Steam and autothermal reformation. International Journal of Hydrogen Energy, 2015. 40.
38. Udani, P., et al., Steam reforming and oxidative steam reforming of methanol over CuO–CeO 2 catalysts. international journal of hydrogen energy, 2009. 34(18): p. 7648-7655.
39. Kniep, B.L., et al., Rational design of nanostructured copper–zinc oxide catalysts for the steam reforming of methanol. Angewandte Chemie International Edition, 2004. 43(1): p. 112-115.
40. Oguchi, H., et al., Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Applied Catalysis A: General, 2005. 281(1): p. 69-73.
41. Waugh, K.C., Methanol Synthesis. Catalysis Today, 1992. 15(1): p. 51-75.
42. Conner Jr, W.C. and J.L. Falconer, Spillover in heterogeneous catalysis. Chemical reviews, 1995. 95(3): p. 759-788.
43. Ritzkopf, I., et al., Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique. Applied Catalysis A: General, 2006. 302(2): p. 215-223.
44. Matsumura, Y. and H. Ishibe, Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen. Journal of Molecular Catalysis A: Chemical, 2011. 345(1): p. 44-53.
45. Patel, S. and K.K. Pant, Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol. Journal of Power Sources, 2006. 159(1): p. 139-143.
46. Cubeiro, M.L. and J.L.G. Fierro, Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A: General, 1998. 168(2): p. 307-322.
47. Sá, S., et al., Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental, 2010. 99(1): p. 43-57.
48. Richards, N.O. and P.A. Erickson, An investigation of a stratified catalyst bed for small-scale hydrogen production from methanol autothermal reforming. International Journal of Hydrogen Energy, 2014. 39(31): p. 18077-18083.
49. Zhao, C.Y., W. Lu, and Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 2010. 84(8): p. 1402-1412.
50. Chen, H., et al., Assessment and optimization of the mass-transfer limitation in a metal foam methanol microreformer. Applied Catalysis A: General, 2008. 337(2): p. 155-162.
51. Zhou, W., et al., Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity. International Journal of Hydrogen Energy, 2015. 40(1): p. 244-255.
52. Chen, H.-Y., F.-G. Tseng, and C. Pan, Drying capability of rmfc micro-channel evaporator with improved flow distribution, gas venting manifold and artificial cavities, in 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019). 2019, Chemical and Biological Microsystems Society. p. 1466-1467.
53. Wang, H.H.F., et al., Design of compact methanol reformer for hydrogen with low CO for the fuel cell power generation. International Journal of Hydrogen Energy, 2012. 37(9): p. 7487-7496.
54. Summers, P., et al., Overview of aluminum alloy mechanical properties during and after fires. Fire Science Reviews, 2015. 4.
55. Conant, T., et al., Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. Journal of Catalysis, 2008. 257(1): p. 64-70.

(此全文20270817後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *