|
[1] S. Tekumalla, M. Gupta, Introductory chapter: An insight into fascinating potential of magnesium, Magnesium—The Wonder Element for Engineering/Biomedical Applications, (2020) 1-10. [2] G.L. Makar, J. Kruger, Corrosion of magnesium, International Materials Reviews, 38 (1993) 138-153. [3] M. Gupta, A snapshot of remarkable potential of mg-based materials as implants, Material Science & Engineering International Journal, 2 (2018). [4] G. Song, Control of biodegradation of biocompatable magnesium alloys, Corrosion Science, 49 (2007) 1696-1701. [5] P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, H.-K. Seok, Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Scientific Reports, 3 (2013) 2367. [6] M. Shirkhanzadeh, Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes, Journal of Materials Science: Materials in Medicine, 6 (1995) 90-93. [7] H.B. Wen, J.R. de Wijn, F.Z. Cui, K. de Groot, Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry, Journal of Biomedical Materials Research, 41 (1998) 227-236. [8] M. Uddin, C. Hall, V. Santos, Fabrication, characterisation and corrosion of HA coated AZ31B Mg implant material: Effect of electrodeposition current density, Surface and Coatings Technology, 385 (2020) 125363. [9] F. Pastorek, B. Hadzima, Study of calcium phosphate (DCPD) electrodeposition process on a Mg-3Al-1Zn magnesium alloy surface, Materials Engineering-Materiálové inžinierstvo (MEMI), 20 (2013) 54-63. [10] M. Omasta, B. Hadzima, F. Pastorek, Effect of Surface Treatment by DCPD Coating on Corrosion Resistance of Magnesium Alloy Elektron 21, Materials Science Forum, 811 (2015) 67-73. [11] H. Bakhsheshi-Rad, S. Saud, E. Hamzah, Effect of Electrodeposition Parameters on the Microstructure and Corrosion Behavior of DCPD Coatings on Biodegradable Mg-Ca-Zn Alloy, International Journal of Applied Ceramic Technology, 12 (2014). [12] D.R. Sumner, J.O. Galante, Determinants of stress shielding, Clinical orthopaedics and related research, 274 (1992) 203-212. [13] Z.R. Mi, S. Shuib, A. Hassan, A. Shorki, M. Ibrahim, Problem of stress shielding and improvement to the hip Implat designs: a review, J. Med. Sci, 7 (2007) 460-467. [14] N. Yamamoto, K. Ohno, K. Hayashi, H. Kuriyama, K. Yasuda, K. Kaneda, Effects of stress shielding on the mechanical properties of rabbit patellar tendon, (1993). [15] S. Shadanbaz, G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomaterialia, 8 (2012) 20-30. [16] J. Yang, G.L. Koons, G. Cheng, L. Zhao, A.G. Mikos, F. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomedical Materials, 13 (2018) 022001. [17] G.S. Kwon, D.Y. Furgeson, 4 - Biodegradable polymers for drug delivery systems, in: M. Jenkins (Ed.) Biomedical Polymers, Woodhead Publishing, 2007, pp. 83-110. [18] J. Levesque, D. Dube, M. Fiset, D. Mantovani, Materials and properties for coronary stents: coronary stents must have excellent mechanical properties to provide strength to artery walls, Advanced Materials & Processes, 162 (2004) 45+. [19] P.A. Dearnley, A brief review of test methodologies for surface-engineered biomedical implant alloys, Surface and Coatings Technology, 198 (2005) 483-490. [20] J.Y. Rho, R.B. Ashman, C.H. Turner, Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, J Biomech, 26 (1993) 111-119. [21] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?, Heart, 89 (2003) 651. [22] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27 (2006) 1728-1734. [23] A. Lambotte, The use of magnesium as material lost in Osteosynthesis, Bull Mém Soc Nat Chir, 28 (1932) 1325-1334. [24] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557-3563. [25] G.L. Song, A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Advanced Engineering Materials, 1 (1999) 11-33. [26] D. Shore, R. Wyatt, Aluminum and Alzheimer's disease, The Journal of nervous and mental disease, 171 (1983) 553-558. [27] P.C. Ferreira, K.d.A. Piai, A.M.M. Takayanagui, S.I. Segura-Muñoz, Aluminum as a risk factor for Alzheimer's disease, Revista latino-americana de enfermagem, 16 (2008) 151-157. [28] J. Walton, Aluminum involvement in the progression of Alzheimer's disease, Journal of Alzheimer's Disease, 35 (2013) 7-43. [29] T.V. Larionova, W.-W. Park, B.-S. You, A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys, Scripta Materialia, 45 (2001) 7-12. [30] D. Zander, N.A. Zumdick, Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys, Corrosion Science, 93 (2015) 222-233. [31] H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M.A.M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj, Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Materials and Corrosion, 65 (2014) 1178-1187. [32] B. Zberg, P.J. Uggowitzer, J.F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Materials, 8 (2009) 887-891. [33] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding, Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution, Materials Science and Engineering: B, 177 (2012) 395-401. [34] K. Xie, L. Wang, Y. Guo, S. Zhao, Y. Yang, D. Dong, W. Ding, K. Dai, W. Gong, G. Yuan, Y. Hao, Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures, Journal of Orthopaedic Translation, 27 (2021) 96-100. [35] H. Ohgushi, M. Okumura, S. Tamai, E.C. Shors, A.I. Caplan, Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation, Journal of biomedical materials research, 24 (1990) 1563-1570. [36] M. Okumura, H. Ohgushi, S. Tamai, Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells, Biomaterials, 12 (1991) 411-416. [37] U. Ripamonti, S.-S. Ma, B. van den Heever, A.H. Reddi, Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates, Plastic and reconstructive surgery, 90 (1992) 382-393. [38] S.C. Leeuwenburgh, J.G. Wolke, M.C. Siebers, J. Schoonman, J.A. Jansen, In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings, Biomaterials, 27 (2006) 3368-3378. [39] F. Barrere, C. Van Der Valk, G. Meijer, R. Dalmeijer, K. De Groot, P. Layrolle, Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67 (2003) 655-665. [40] P. Habibovic, F. Barrere, C.A. Van Blitterswijk, K. de Groot, P. Layrolle, Biomimetic hydroxyapatite coating on metal implants, Journal of the American Ceramic Society, 85 (2002) 517-522. [41] K. Duan, A. Tang, R. Wang, A new evaporation-based method for the preparation of biomimetic calcium phosphate coatings on metals, Materials Science and Engineering: C, 29 (2009) 1334-1337. [42] Y. Zhang, G. Zhang, M. Wei, Controlling the biodegradation rate of magnesium using biomimetic apatite coating, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B (2009) 408-414. [43] A. Roy, S.S. Singh, M.K. Datta, B. Lee, J. Ohodnicki, P.N. Kumta, Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy, Materials Science and Engineering: B, 176 (2011) 1679-1689. [44] S. Zhang, Z. Xianting, W. Yongsheng, C. Kui, W. Wenjian, Adhesion strength of sol–gel derived fluoridated hydroxyapatite coatings, Surface and Coatings Technology, 200 (2006) 6350-6354. [45] H. Qu, M. Wei, Improvement of bonding strength between biomimetic apatite coating and substrate, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 84 (2008) 436-443. [46] S. Ban, S. Maruno, N. Arimoto, A. Harada, J. Hasegawa, Effect of electrochemically deposited apatite coating on bonding of bone to the HA‐G‐Ti composite and titanium, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 36 (1997) 9-15. [47] C.T. Kwok, P. Wong, F. Cheng, H.C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied surface science, 255 (2009) 6736-6744. [48] Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang, Electrodeposition of Ca–P coatings on biodegradable Mg alloy: In vitro biomineralization behavior, Acta Biomaterialia, 6 (2010) 1736-1742. [49] J. Niu, G. Yuan, Y. Liao, L. Mao, J. Zhang, Y. Wang, F. Huang, Y. Jiang, Y. He, W. Ding, Enhanced biocorrosion resistance and biocompatibility of degradable Mg–Nd–Zn–Zr alloy by brushite coating, Materials Science and Engineering: C, 33 (2013) 4833-4841. [50] H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy, Surface and Coatings Technology, 222 (2013) 79-89. [51] R. Drevet, H. Benhayoune, L. Wortham, S. Potiron, J. Douglade, D. Laurent-Maquin, Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings, Materials Characterization, 61 (2010) 786-795. [52] N. Eliaz, T.M. Sridhar, Electrocrystallization of Hydroxyapatite and Its Dependence on Solution Conditions, Crystal Growth & Design, 8 (2008) 3965-3977. [53] M.S. Djošić, V. Panić, J. Stojanović, M. Mitrić, V.B. Mišković-Stanković, The effect of applied current density on the surface morphology of deposited calcium phosphate coatings on titanium, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 400 (2012) 36-43. [54] A.W. Jeremiasse, H.V.M. Hamelers, J.M. Kleijn, C.J.N. Buisman, Use of Biocompatible Buffers to Reduce the Concentration Overpotential for Hydrogen Evolution, Environmental Science & Technology, 43 (2009) 6882-6887. [55] R. Zeitoun, A. Biswas, Review—Potentiometric Determination of Phosphate Using Cobalt: A Review, Journal of the Electrochemical Society, 167 (2020). [56] Z. Grubač, M. Metikoš-Huković, R. Babić, Electrocrystallization, growth and characterization of calcium phosphate ceramics on magnesium alloys, Electrochimica Acta, 109 (2013) 694-700. [57] M. Horynová, M. Remešová, L. Klakurková, K. Dvořák, I. Ročňáková, S. Yan, L. Čelko, G.-L. Song, Design of tailored biodegradable implants: The effect of voltage on electrodeposited calcium phosphate coatings on pure magnesium, Journal of the American Ceramic Society, 102 (2019) 123-135. [58] J. Zhang, W. Liu, V. Schnitzler, F. Tancret, J.-M. Bouler, Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties, Acta Biomaterialia, 10 (2014) 1035-1049. [59] R. Barua, C.S. Daly-Seiler, Y. Chenreghanianzabi, D. Markel, Y. Li, M. Zhou, W. Ren, Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109 (2021) 1644-1655. [60] V. Grozovski, S. Vesztergom, G.G. Láng, P. Broekmann, Electrochemical Hydrogen Evolution: H+or H2O Reduction? A Rotating Disk Electrode Study, Journal of The Electrochemical Society, 164 (2017) E3171-E3178. [61] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solution, NACE, 307 (1974). [62] N. Eliaz, N. Metoki, Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications, Materials (Basel), 10 (2017). [63] Z. Li, S. Shizhao, M. Chen, B.D. Fahlman, L. Debao, H. Bi, In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws, Materials Science and Engineering: C, 75 (2017) 1268-1280. [64] M. Rahman, Y. Li, C. Wen, Realization and characterization of double-layer Ca-P coating on WE43 Mg alloy for biomedical applications, Surface and Coatings Technology, 398 (2020) 126091.
|