帳號:guest(3.128.30.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):符仙瑚
作者(外文):Fu, Shian-Hwu.
論文名稱(中文):以電鍍法於生物可分解鎂合金表面製備鈣磷化物鍍層
論文名稱(外文):Producing Ca-P Coating on Biodegradable Magnesium Alloys by Electrodeposition
指導教授(中文):朱鵬維
指導教授(外文):Chu, Peng-Wei.
口試委員(中文):林招松
葉宗洸
林名釗
口試委員(外文):Lin, Chao-Sung.
Yeh, Tsung-Kuang.
Lin, Ming-Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011519
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:78
中文關鍵詞:鎂合金生物可分解植入物鈣磷化物鍍層電鍍鈣磷石腐蝕電化學
外文關鍵詞:Magnesium alloyBiodegradable implantCa-P coatingElectrodepositionDicalcium phosphate dihydrateCorrosionElectrochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生物可分解植入物旨在代替現有的生醫植入物,其概念為透過該材料能夠在人體中降解的特性,使植入物在療程結束後可經新陳代謝排出人體,而不須用進行手術取出。鎂合金有著優秀的生物匹配性與可降解性,是十分適合作為生物可分解植入物的金屬材料。此外,鎂有在金屬結構材料中,最接近人體骨骼的密度以及最低的楊氏係數,能夠降低應力遮蔽效應的影響。然而,鎂合金過快的降解速率,是其作為生物可分解植入物應用的關鍵瓶頸。為了避免鎂合金植入物在人體中因降解過快造成氫氣泡堆積及局部酸鹼值上昇對患者造成的傷害,我們必須控制鎂合金在人體環境中的腐蝕降解速率。鍍膜為一能有效控制金屬材料腐蝕速率的方法,其中鈣磷化物鍍層除了可有效降低鎂合金底材的腐蝕降解速率之外,還具有良好的生物匹配性,並能增進植入物的骨整合性,因此非常適合作為控制鎂合金腐蝕速率的鍍層。
本研究使用電鍍法於含硝酸鈣(Ca(NO3)2)、磷酸二氫銨(NH4H2PO4)、過氧化氫(H2O2)以及硝酸鉀(NaNO3)的電鍍液中在生物可分解鎂合金表面製備鈣磷化物鍍層,探討其電鍍機制和尋找最佳的電鍍製程參數,並將製備出的鍍層浸泡於模擬人體體液中進行腐蝕電化學性質測試,以比較製程參數之優劣及對合金底材抗蝕性之提昇。以結合電鍍製程、電化學量測、與鍍層微結構形貌分析的研究方法,釐清電鍍鈣磷化物鍍層的機制及判斷不同製程參數對鍍層形貌和腐蝕行為之影響。
研究結果顯示,電鍍所形成的鈣磷石(dicalcium phosphate dihydrate, DCPD)鍍層主要透過電鍍液中磷酸氫根與鈣離子的結合並於鎂合金表面沉積,而磷酸氫根的主要來源為氫離子還原所誘發的磷酸二氫根解離。當施加電位太負或合金表面存在二次相時,會產生或加劇水還原反應的參與,使得局部pH值上升產生氫氧化鎂,進而導致平板狀非晶質磷酸鈣(amorphous calcium phosphate, ACP)鍍層缺陷的出現而降低鍍層的抗蝕性。經腐蝕電化學測試,最佳的製程參數為在室溫下固定電位於-1.8 V vs SCE電鍍1.5小時。在長時間浸泡的實驗中,鈣磷化物鍍層保護之鎂合金樣品在浸泡過程中的抗蝕性皆優於鎂合金底材,而降解過程中所產生的腐蝕產物也顯示此鍍層應可增進植入物之骨整合性。
Biodegradable implants are designed to substitute current nondegradable medical materials. Biodegradable implants can decompose in the patient body and be discharged through metabolism when the treatment is finished, avoiding removal surgeries. Magnesium (Mg) alloys, with their biocompatibility and degradability, meet the requirements of biodegradable implants. Besides, Mg has a similar density to human bones and the lowest elastic modulus among structural metallic biomaterials, which can mitigate the stress shielding effect. However, the degradation rate of Mg alloy implants needs to be controlled, or the implant may corrode too fast, causing local hydrogen gas accumulation and alkalization that hurts the patients. One of the effective ways to control the alloy corrosion rate is by coating. Ca-P coatings can not only mitigate the degradation rate of Mg alloys but also show good biocompatibility and improved osseointegration.
In this study, electrodeposition is used to prepare Ca-P coating on biodegradable Mg alloys in a solution containing calcium nitrate (Ca(NO3)2), ammonium dihydrogen phosphate (NH4H2PO4), hydrogen peroxide (H2O2), and sodium hydroxide (NaNO3). The deposition mechanism and optimal electrodeposition parameters are investigated. The corrosion properties of the prepared coating compared to the Mg alloy substrate are tested in simulated human body fluid by electrochemical measurements to compare the effects of different process parameters. A combination of electrodeposition process, electrochemical tests, and microstructure characterizations is used to investigate the deposition mechanism and the influence of different parameters on the coating morphology and the corrosion behavior.
The experimental results show that during electrodeposition, the formation of dicalcium phosphate dihydrate (DCPD) coating on the Mg alloy surface comes from the combination of hydrogen phosphate and calcium ions in the solution. The hydrogen phosphate ions come from the decomposition of dihydrogen phosphate ions, triggered by hydrogen ion reduction. Water reduction occurs when the deposition potential is too low or second phases are present on the alloy surface, which results in the appearance of amorphous calcium phosphate (ACP) defect in the coating, which reduces the corrosion resistance of the coating. The best electrodeposition process is under constant potential at -1.8 V vs SCE for 1.5 hours at room temperature. In the long term immersion experiments, this coating always shows a better corrosion resistance than the Mg alloy substrate, and the corrosion products during immersion could improve the osseointegration of the implant.
摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2.1 生物可分解鎂合金 3
2.2 鈣磷化物鍍層 6
2.2.1 鈣磷化物鍍層簡介 6
2.2.2 鈣磷化物鍍層合成方法 6
2.2.3 電鍍法合成機制 7
2.2.4 鍍層成品差異 11
2.2.5 不同鈣磷化物鍍層的抗蝕表現 15
第三章 實驗方法與步驟 18
3.1 實驗流程 18
3.2 實驗材料製備 18
3.3 溶液配製 19
3.3.1 電鍍液 19
3.3.2 模擬人體體液 20
3.4 鈣磷化物鍍層電鍍 21
3.5 微結構觀測與成分分析 21
3.6 晶體結構分析 22
3.7 電化學腐蝕性質量測 22
3.7.1 開路電位量測 23
3.7.2 電化學阻抗分析 23
3.7.3 動電位極化掃描 25
3.8 長時間浸泡實驗 26
第四章 實驗結果 27
4.1 電鍍機制 27
4.1.1 電鍍過程的還原反應種類 27
4.1.2 電鍍過程的溶液酸鹼值 29
4.1.3 不同電位對鍍層結構的影響 32
4.1.4 氫氧化鎂膜層對DCPD鍍層微結構的影響 34
4.2 DCPD鍍層電鍍參數探討及鍍層抗蝕表現 36
4.2.1 電鍍電位 37
4.2.2 電鍍溫度與時間 39
4.2.3 長時間浸泡實驗 51
第五章 討論 60
5.1 電鍍機制 60
5.1.1 還原反應式 60
5.1.2 酸鹼值的影響 62
5.1.3 氫氧化鎂的影響 65
5.2 製程參數對鍍層抗腐蝕性質的影響 68
5.3 長時間浸泡測試 70
第六章 結論 72
第七章 未來展望 73
參考資料 74
[1] S. Tekumalla, M. Gupta, Introductory chapter: An insight into fascinating potential of magnesium, Magnesium—The Wonder Element for Engineering/Biomedical Applications, (2020) 1-10.
[2] G.L. Makar, J. Kruger, Corrosion of magnesium, International Materials Reviews, 38 (1993) 138-153.
[3] M. Gupta, A snapshot of remarkable potential of mg-based materials as implants, Material Science & Engineering International Journal, 2 (2018).
[4] G. Song, Control of biodegradation of biocompatable magnesium alloys, Corrosion Science, 49 (2007) 1696-1701.
[5] P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, H.-K. Seok, Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Scientific Reports, 3 (2013) 2367.
[6] M. Shirkhanzadeh, Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes, Journal of Materials Science: Materials in Medicine, 6 (1995) 90-93.
[7] H.B. Wen, J.R. de Wijn, F.Z. Cui, K. de Groot, Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry, Journal of Biomedical Materials Research, 41 (1998) 227-236.
[8] M. Uddin, C. Hall, V. Santos, Fabrication, characterisation and corrosion of HA coated AZ31B Mg implant material: Effect of electrodeposition current density, Surface and Coatings Technology, 385 (2020) 125363.
[9] F. Pastorek, B. Hadzima, Study of calcium phosphate (DCPD) electrodeposition process on a Mg-3Al-1Zn magnesium alloy surface, Materials Engineering-Materiálové inžinierstvo (MEMI), 20 (2013) 54-63.
[10] M. Omasta, B. Hadzima, F. Pastorek, Effect of Surface Treatment by DCPD Coating on Corrosion Resistance of Magnesium Alloy Elektron 21, Materials Science Forum, 811 (2015) 67-73.
[11] H. Bakhsheshi-Rad, S. Saud, E. Hamzah, Effect of Electrodeposition Parameters on the Microstructure and Corrosion Behavior of ‎DCPD Coatings on Biodegradable Mg-Ca-Zn Alloy, International Journal of Applied Ceramic Technology, 12 (2014).
[12] D.R. Sumner, J.O. Galante, Determinants of stress shielding, Clinical orthopaedics and related research, 274 (1992) 203-212.
[13] Z.R. Mi, S. Shuib, A. Hassan, A. Shorki, M. Ibrahim, Problem of stress shielding and improvement to the hip Implat designs: a review, J. Med. Sci, 7 (2007) 460-467.
[14] N. Yamamoto, K. Ohno, K. Hayashi, H. Kuriyama, K. Yasuda, K. Kaneda, Effects of stress shielding on the mechanical properties of rabbit patellar tendon, (1993).
[15] S. Shadanbaz, G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomaterialia, 8 (2012) 20-30.
[16] J. Yang, G.L. Koons, G. Cheng, L. Zhao, A.G. Mikos, F. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomedical Materials, 13 (2018) 022001.
[17] G.S. Kwon, D.Y. Furgeson, 4 - Biodegradable polymers for drug delivery systems, in: M. Jenkins (Ed.) Biomedical Polymers, Woodhead Publishing, 2007, pp. 83-110.
[18] J. Levesque, D. Dube, M. Fiset, D. Mantovani, Materials and properties for coronary stents: coronary stents must have excellent mechanical properties to provide strength to artery walls, Advanced Materials & Processes, 162 (2004) 45+.
[19] P.A. Dearnley, A brief review of test methodologies for surface-engineered biomedical implant alloys, Surface and Coatings Technology, 198 (2005) 483-490.
[20] J.Y. Rho, R.B. Ashman, C.H. Turner, Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, J Biomech, 26 (1993) 111-119.
[21] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?, Heart, 89 (2003) 651.
[22] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27 (2006) 1728-1734.
[23] A. Lambotte, The use of magnesium as material lost in Osteosynthesis, Bull Mém Soc Nat Chir, 28 (1932) 1325-1334.
[24] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557-3563.
[25] G.L. Song, A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Advanced Engineering Materials, 1 (1999) 11-33.
[26] D. Shore, R. Wyatt, Aluminum and Alzheimer's disease, The Journal of nervous and mental disease, 171 (1983) 553-558.
[27] P.C. Ferreira, K.d.A. Piai, A.M.M. Takayanagui, S.I. Segura-Muñoz, Aluminum as a risk factor for Alzheimer's disease, Revista latino-americana de enfermagem, 16 (2008) 151-157.
[28] J. Walton, Aluminum involvement in the progression of Alzheimer's disease, Journal of Alzheimer's Disease, 35 (2013) 7-43.
[29] T.V. Larionova, W.-W. Park, B.-S. You, A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys, Scripta Materialia, 45 (2001) 7-12.
[30] D. Zander, N.A. Zumdick, Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys, Corrosion Science, 93 (2015) 222-233.
[31] H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M.A.M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj, Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Materials and Corrosion, 65 (2014) 1178-1187.
[32] B. Zberg, P.J. Uggowitzer, J.F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Materials, 8 (2009) 887-891.
[33] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding, Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution, Materials Science and Engineering: B, 177 (2012) 395-401.
[34] K. Xie, L. Wang, Y. Guo, S. Zhao, Y. Yang, D. Dong, W. Ding, K. Dai, W. Gong, G. Yuan, Y. Hao, Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures, Journal of Orthopaedic Translation, 27 (2021) 96-100.
[35] H. Ohgushi, M. Okumura, S. Tamai, E.C. Shors, A.I. Caplan, Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation, Journal of biomedical materials research, 24 (1990) 1563-1570.
[36] M. Okumura, H. Ohgushi, S. Tamai, Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells, Biomaterials, 12 (1991) 411-416.
[37] U. Ripamonti, S.-S. Ma, B. van den Heever, A.H. Reddi, Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates, Plastic and reconstructive surgery, 90 (1992) 382-393.
[38] S.C. Leeuwenburgh, J.G. Wolke, M.C. Siebers, J. Schoonman, J.A. Jansen, In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings, Biomaterials, 27 (2006) 3368-3378.
[39] F. Barrere, C. Van Der Valk, G. Meijer, R. Dalmeijer, K. De Groot, P. Layrolle, Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67 (2003) 655-665.
[40] P. Habibovic, F. Barrere, C.A. Van Blitterswijk, K. de Groot, P. Layrolle, Biomimetic hydroxyapatite coating on metal implants, Journal of the American Ceramic Society, 85 (2002) 517-522.
[41] K. Duan, A. Tang, R. Wang, A new evaporation-based method for the preparation of biomimetic calcium phosphate coatings on metals, Materials Science and Engineering: C, 29 (2009) 1334-1337.
[42] Y. Zhang, G. Zhang, M. Wei, Controlling the biodegradation rate of magnesium using biomimetic apatite coating, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B (2009) 408-414.
[43] A. Roy, S.S. Singh, M.K. Datta, B. Lee, J. Ohodnicki, P.N. Kumta, Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy, Materials Science and Engineering: B, 176 (2011) 1679-1689.
[44] S. Zhang, Z. Xianting, W. Yongsheng, C. Kui, W. Wenjian, Adhesion strength of sol–gel derived fluoridated hydroxyapatite coatings, Surface and Coatings Technology, 200 (2006) 6350-6354.
[45] H. Qu, M. Wei, Improvement of bonding strength between biomimetic apatite coating and substrate, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 84 (2008) 436-443.
[46] S. Ban, S. Maruno, N. Arimoto, A. Harada, J. Hasegawa, Effect of electrochemically deposited apatite coating on bonding of bone to the HA‐G‐Ti composite and titanium, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 36 (1997) 9-15.
[47] C.T. Kwok, P. Wong, F. Cheng, H.C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied surface science, 255 (2009) 6736-6744.
[48] Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang, Electrodeposition of Ca–P coatings on biodegradable Mg alloy: In vitro biomineralization behavior, Acta Biomaterialia, 6 (2010) 1736-1742.
[49] J. Niu, G. Yuan, Y. Liao, L. Mao, J. Zhang, Y. Wang, F. Huang, Y. Jiang, Y. He, W. Ding, Enhanced biocorrosion resistance and biocompatibility of degradable Mg–Nd–Zn–Zr alloy by brushite coating, Materials Science and Engineering: C, 33 (2013) 4833-4841.
[50] H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy, Surface and Coatings Technology, 222 (2013) 79-89.
[51] R. Drevet, H. Benhayoune, L. Wortham, S. Potiron, J. Douglade, D. Laurent-Maquin, Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings, Materials Characterization, 61 (2010) 786-795.
[52] N. Eliaz, T.M. Sridhar, Electrocrystallization of Hydroxyapatite and Its Dependence on Solution Conditions, Crystal Growth & Design, 8 (2008) 3965-3977.
[53] M.S. Djošić, V. Panić, J. Stojanović, M. Mitrić, V.B. Mišković-Stanković, The effect of applied current density on the surface morphology of deposited calcium phosphate coatings on titanium, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 400 (2012) 36-43.
[54] A.W. Jeremiasse, H.V.M. Hamelers, J.M. Kleijn, C.J.N. Buisman, Use of Biocompatible Buffers to Reduce the Concentration Overpotential for Hydrogen Evolution, Environmental Science & Technology, 43 (2009) 6882-6887.
[55] R. Zeitoun, A. Biswas, Review—Potentiometric Determination of Phosphate Using Cobalt: A Review, Journal of the Electrochemical Society, 167 (2020).
[56] Z. Grubač, M. Metikoš-Huković, R. Babić, Electrocrystallization, growth and characterization of calcium phosphate ceramics on magnesium alloys, Electrochimica Acta, 109 (2013) 694-700.
[57] M. Horynová, M. Remešová, L. Klakurková, K. Dvořák, I. Ročňáková, S. Yan, L. Čelko, G.-L. Song, Design of tailored biodegradable implants: The effect of voltage on electrodeposited calcium phosphate coatings on pure magnesium, Journal of the American Ceramic Society, 102 (2019) 123-135.
[58] J. Zhang, W. Liu, V. Schnitzler, F. Tancret, J.-M. Bouler, Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties, Acta Biomaterialia, 10 (2014) 1035-1049.
[59] R. Barua, C.S. Daly-Seiler, Y. Chenreghanianzabi, D. Markel, Y. Li, M. Zhou, W. Ren, Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109 (2021) 1644-1655.
[60] V. Grozovski, S. Vesztergom, G.G. Láng, P. Broekmann, Electrochemical Hydrogen Evolution: H+or H2O Reduction? A Rotating Disk Electrode Study, Journal of The Electrochemical Society, 164 (2017) E3171-E3178.
[61] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solution, NACE, 307 (1974).
[62] N. Eliaz, N. Metoki, Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications, Materials (Basel), 10 (2017).
[63] Z. Li, S. Shizhao, M. Chen, B.D. Fahlman, L. Debao, H. Bi, In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws, Materials Science and Engineering: C, 75 (2017) 1268-1280.
[64] M. Rahman, Y. Li, C. Wen, Realization and characterization of double-layer Ca-P coating on WE43 Mg alloy for biomedical applications, Surface and Coatings Technology, 398 (2020) 126091.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *