帳號:guest(18.224.54.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):秦鈺翔
作者(外文):Chin, Yu-Shiang
論文名稱(中文):佔空比及工作氣壓對高功率脈衝與非平衡磁控共濺鍍於D2鋼基材之氮化鈦鋯鍍層結構和機械性質的影響
論文名稱(外文):Effects of Duty Cycle and Working Pressure on Structure and Mechanical Properties of TiZrN Coatings on D2 Steel by Co-sputtering HPPMS/UBMS
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):藍貫哲
李志偉
口試委員(外文):Lan, Kuan-Che
Lee, Jyh-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011511
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:82
中文關鍵詞:氮化鈦鋯高功率脈衝磁控濺鍍佔空比工作氣壓機械性質
外文關鍵詞:TiZrNHPPMSDuty cycleworking pressuremechanical properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:64
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的在於討論佔空比及工作氣壓對氮化鈦鋯薄膜結構和機械性質的影響。氮化鈦鋯薄膜是由高功率脈衝與非平衡磁濺共鍍法鍍製於D2鋼上。藉由調整高功率脈衝與非平衡磁濺共鍍法製程參數以降低氮化鈦鋯薄膜的殘留應力也是本研究的目的之一。鈦和鋯分別藉由高功率脈衝和非平衡磁濺法沉積。控制的參數為佔空比(D系列)和工作氣壓(P系列)。降低佔空比會使靶材的電流密度峰值上升,並提高離化率以及電漿粒子的能量,因此對於成長中薄膜的離子轟擊效應隨之增強,導致殘留應力無法被有效降低以及產生(200)織構的氮化鈦鋯薄膜。在P系列中,工作氣壓增加的同時會導致電漿中粒子的平均自由徑縮短,意味著粒子間的碰撞次數增加,導致電漿粒子能量降低,入射粒子所造成的離子轟擊效應減弱,而薄膜中的殘留應力也隨之下降。氮化鈦鋯薄膜的磨耗率變化幅度相當小,從20.0到28.7x10^(-6) mm^3xN^(-1)xm^(-1)。薄膜與基板間附著力達到30牛頓時即可防止薄膜脫落。結果顯示,多數用來估算抗磨耗性的本質因子與氮化鈦鋯薄膜的磨耗率並無太大關聯性。在磨耗測試過後的磨道裡及磨道兩側都能發現細小的碎屑,可推論磨耗機制可能為三物體間磨料磨損,是由磨球和碎屑同時對薄膜進行磨耗行為,因此不同參數所鍍製出的薄膜其磨耗率差異並不大。從結果可以推論在對(200)織構的薄膜進行磨耗測試時,可能比在(111)織構和隨機織構中更容易產生細小碎屑。
The objective of this study was to investigate the effect of duty cycle and working pressure on structure and mechanical properties of TiZrN coatings deposited on D2 steel by a hybrid high power pulsed magnetron sputtering (HPPMS) and unbalanced magnetron sputtering (UBMS) system. This study also aimed to reduce the residual stress of TiZrN coatings by adjusting the deposition parameters in the hybrid HPPMS/UBMS process. In depositing TiZrN coatings, Ti was deposited by HPPMS and Zr was by UBMS. The controlling parameters were duty cycle (D-series) and working pressure (P-series). The decrease of duty cycle will increase the peak target current density that increases the ionization rate and energy of plasma species, by which the ion-peening effect on the growing film is enhanced, and thus the residual stress cannot be effectively decreased and the resultant TiZrN coatings are with (200) texture. In P-series specimens, the mean free path of plasma species decreases with increasing working pressure, and hence collisions between plasma species increase, thereby decreasing the energy of plasma species. Consequently, the residual stress decreases in the coatings due to less ion-peening effect by the incident particles. The wear rate of the TiZrN coatings varies in a narrow range from 20.0 to 28.7x10^(-6) mm^3xN^(-1)xm^(-1). The adhesion strength (Lc3) of the coatings is above 30 N that is sufficient for resisting delamination. The results showed that most of the internal factors for assessing the wear resistance are not significantly correlated to the wear rate of the TiZrN coatings. Fine coating debris are observed in the wear track and pile-up on both sides, suggesting that the wear mechanism may be three-body abrasive wear, where the coating is worn out by both coating debris and wear ball. Accordingly, the wear rates of the coatings deposited by different parameters do not show distinct difference. It is speculated that (200)-textured coatings may be easier in producing the fine debris during wear test than (111) or random textured coatings.
Content
摘要 ii
Abstract iii
致謝 iv
Content vi
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Characteristics of Transition Metal Nitride Coatings 3
2.2 Characteristics of TiZrN Coatings 3
2.2.1 Structure of TiZrN coatings 5
2.2.2 Texture Evolution 5
2.2.3 Mechanical Properties of TiZrN Coatings 7
2.2.4 Residual Stress 8
2.3 Tribological Behavior 8
2.3.1 Adhesion Strength 8
2.3.2 Wear Resistance 9
2.3.3 Evaluation of Wear Resistance 10
2.4 High Power Pulsed Magnetron Sputtering (HPPMS) 11
2.5 Hybrid Technologies 12
Chapter 3 Experimental Procedures 14
3.1 Substrate Preparation 14
3.2 Deposition Procedures 14
3.3 Characterization Methods for Structure and Compositions 19
3.3.1 Crystal Structure - X-Ray Diffraction (XRD) and Glancing Incidence X-Ray Diffraction (GIXRD) 19
3.3.2 Microstructure - Field Emission Gun Scanning Electron Microscope (FEG-SEM) 20
3.3.3 Chemical Compositions - Field Emission Electron Probe Microanalyzer (FE-EPMA) 20
3.3.4 Surface Roughness - Atomic Force Microscope (AFM) 20
3.4 Characterization of Properties 21
3.4.1 Residual Stress by Laser Curvature Method 21
3.4.2 Residual Stress by Average X-ray Strain (AXS) Method 22
3.4.3 Hardness and Young’s Modulus 23
3.4.4 Adhesion Strength - Scratch Test 23
3.4.5 Wear Rate - Pin-on-disk Wear Test 24
3.4.6 Electrical Resistivity – Four-Point Probe 26
3.5 High Power Pulsed Magnetron Sputtering (HPPMS) 27
3.5.1 HPPMS Power Monitoring – Oscilloscope 27
3.5.2 Plasma Diagnosis – Optical Emission Spectroscope (OES) 28
Chapter 4 Results 29
Part I Effect of Duty Cycle 33
4.1 Oscilloscope and optical Emission Spectrometer 33
4.1.1 Oscilloscope 33
4.1.2 Optical Emission Spectroscopy 33
4.2 Chemical Compositions and Structure 36
4.2.1 Chemical Compositions 36
4.2.2 Crystal Structure and Preferred Orientation 37
4.2.3 Cross-sectional Microstructure 40
4.2.4 Surface Roughness 40
4.3 Properties 41
4.3.1 Hardness and Young’s modulus 41
4.3.2 Residual Stress 41
4.3.3 Adhesion Strength 42
4.3.4 Wear Resistance 44
Part II Effect of Working Pressure of HPPMS Process 48
4.4 Waveform and optical emission spectra 48
4.5 Chemical composition and structure 48
4.5.1 Chemical compositions 48
4.5.2 Crystal Structure and Preferred Orientation 48
4.5.3 Cross-sectional Microstructure and Surface Roughness 51
4.6 Properties 53
4.6.1 Hardness and Young’s Modulus 53
4.6.2 Residual Stress 53
4.6.3 Adhesion Strength and Wear Resistance 53
Chapter 5 Discussion 59
5.1 Effect of Duty Cycle 59
5.1.1 Texture and Chemical Compositions 59
5.1.2 Residual Stress 61
5.2 Effect of Working Pressure 62
5.2.1 Texture 62
5.2.2 Residual Stress and Electrical Resistivity 62
5.3 Tribological Behavior 64
5.3.1 Adhesion Strength 64
5.3.2 Wear Resistance 64
Chapter 6 Conclusions 68
Reference 69
Appendix A Power Cycle Induced Fatigue 80
Appendix B AFM images of the film 82

[1] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17-24.
[2] Z.B. Qi, P. Sun, F.P. Zhu, Z.C. Wang, D.L. Peng, C.H. Wu, The inverse Hall-Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692-3697.
[3] L.E. Toth, Transition Metal Carbides and Nitrides, Refractory Materials 1971.
[4] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Technol. 66 (1994) 318-323.
[5] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41 (1990) 191-204.
[6] L.V. Leaven, M.N. Alias, R. Brown, Corrosion behavior of ion plated and implanted films, Surf. Coat. Technol. 53 (1992) 25-34.
[7] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, N. Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear 264 (2008) 298-307.
[8] Pulsed DC titanium nitride coatings for improved tribologicalperformance and tool life, Surf. Coat. Technol. 202 (2007) 774-780.
[9] L. Hultman, Thermal stability of nitride thin films, Vacuum 57 (2000) 1.
[10] Y. -W. Lin, H. -A. Chen, G. -P. Yu, J. -H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films 618 (2016) 13-20.
[11] H. -M. Tung, P. -H. Wu, G. -P. Yu, J. -H. Huang, Microstructures, mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films, Vacuum 115 (2015) 12-18.
[12] Y. -W. Lin, J. -H. Huang, W. -J. Cheng, G. -P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
[13] Y. -W. Lin, P. -C. Chih, J. -H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol. 394 (2020) 125690.
[14] V. Kouznetsov, K. Macáka, J. M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122 (1999) 290-293.
[15] A. -P. Ehiasarian, P. Eh. Hovsepian, L. Hultman, U. Helmersson, Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique, Thin Solid Films 457 (2004) 270-277.
[16] G. Greczynski, J. Lu, J. Jensen, I. Petrov, J. E. Greene, S. Bolz, W. Kölker, C. Schiffers, O. Lemmer, L. Hultman, Metal versus rare-gas ion irradiation during Ti1-xAlxN film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias, J. Vac. Sci. Technol. A 30 (2012) 061504.
[17] G. Greczynski, J. Lu, M. P. Johansson, J. Jensen, I. Petrov, J. E. Greene, L. Hultman, Role of Tin+ and Aln+ ion irradiation (n=1,2) during Ti1-xAlxN alloy film growth in a hybrid HPIMS/magnetron mode, Surf. Coat. Technol. 206 (2012) 4202-4211.
[18] G. Greczynski, J. Patscheider, J. Lu, B. Alling, A. Ektarawong, J. Jensen, I. Petrov, J. E. Greene, L. Hultman, Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPMS/DCMS co-deposition, Surf. Coat. Technol. 280 (2015) 174-184.
[19] M. Nose, M. Zhou, E. Honbo, M. Yokota, S. Saji, Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering, Surf. Coat. Technol. 142-144 (2001) 211-217.
[20] N. Pessall, R.E. Gold, H.A. Johansen, A study of superconductivity in interstitial compounds, J. Phys. Chem. Solids 29 (1968) 19-38.
[21] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films 405 (2002) 162-169.
[22] H.A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, Bull Alloy Phase Diagr 8 (1987) 378-388.
[23] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus. 27 (2006) 551.
[24] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys. 72 (1992) 1805.
[25] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films 153 (1987) 37-43.
[26] K. Chen, L.R. Zhao, J. Rodgers, J.S. Tse, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys. 36 (2003) 2725-2729.
[27] A.J. Perry, A contribution to the study of poisson's ratios and elastic constants of TiN, ZrN and HfN, Thin Solid Films 193/194 (1990) 463-471.
[28] D. Maheo, J.-M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films 237 (1994) 78-86.
[29] Y. -W. Lin, J. -H. Huang, G. -P. Yu, C. -N. Hsiao, F. -Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci. 354 (2015) 155-160.
[30] G. Abadias, L. E. Koutsokeras, A. Siozios, P. Patsalas, Stress, phase stability and oxidation resistance of ternary Ti-Me-N (Me = Zr, Ta) hard coatings, Thin Solid Films 538 (2013) 56-70.
[31] O. Knotek, M. Böhmer, T. Leyendecker, F. Jungblut, The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings, Mater. Sci. Eng. A 105-106 (1988) 481-488.
[32] A. Hoerling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, L. Hultman, Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films, Thin Solid Films 516 (2008) 6421-6431.
[33] G. Abadias, V. I. Ivashchenko, L. Belliard, P. Djemia, Structure, phase stability and elastic properties in the Ti1-xZrxN thin-film system: Experimental and computational studies, Acta Mater. 60 (2012) 5601-5614.
[34] L. A. Donohue, J. Cawley, J. S. Brooks, Deposition and characterization of arc-bond sputter TixZryN coatings from pure metallic and segmented targets, Surf. Coat. Technol. 72 (1995) 128-138.
[35] J. -H. Huang, Y. -F. Chen, G. -P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol. 358 (2019) 487-496.
[36] Y. -W. Lin, C. -W. Lu, G. -P. Yu, J. -H. Huang, Structure and properties of nanocrystalline (TiZr)xN1-x thin films deposited by DC unbalanced magnetron sputtering, J. Nanomater. 2016 (2016) 2982184.
[37] Y. -W. Lin, J. -H. Huang, G. -P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518 (2010) 7308-7311.
[38] J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117-128.
[39] A. P. Ehiasarian, A. Vetushka, Y. A. Gonzalvo, G. Sáfrán, L. Székely, P. B. Barna, Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films, J. Appl. Phys., 109 (2011) 104314.
[40] L. Hultman, J. -E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, High-flux low-energy (≂20 eV) N2+ ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys. 78 (1995) 5395-5403.
[41] D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, J. E. Greene, Pathways of atomistic processes on TiN(011) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys. 93 (2003) 9086-9094.
[42] I. Petrov, L. Hultman, J. -E. Sundgren, J. E. Greene, Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bombardment on resputtering rates, film composition, and microstructure, J. Vac. Sci. Technol. A 10 (1992) 265-272.
[43] W. Ensinger, Growth of thin films with preferential crystallographic orientation by ion bombardment during deposition, Surf. Coat. Technol. 65 (1994) 90-105.
[44] L. S. Yu, J. M. E. Harper, J. J. Cuomo, D. A. Smith, Alignment of thin films by glancing angle ion bombardment during deposition, J. Vac. Sci. Technol. A 4 (1986) 443-447.
[45] C. -H. Ma, J. -H. Huang, H. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films 446 (2004) 184-193.
[46] C. -L. Chang, S. -G. Shih, P. -H. Chen, W. -C. Chen, C. -T. Ho, W. -Y. Wu, Effect of duty cycles on the deposition and characteristic of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coat. Technol. 259 (2014) 232-237.
[47] D. Burgreen, Elements of Thermal Stress Analysis, C. P. Press, New York, 1971.
[48] H. Oettel, R. Weidemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74-75 (1995) 273-278.
[49] R. W. Hoffman, Physics of Non-metallic Thin Films, New York, 1970.
[50] K.-S. Kim, H.-K. Kim, J.-H. La, S.-Y. Lee, Effects of interlayer thickness and the substrate material on the adhesion properties of CrZrN coatings, Jpn. J. Appl. Phys. 55 (2016) 01AA02.
[51] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films 154 (1987) 333-349.
[52] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films 270 (1995) 431-438.
[53] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol. 96 (1997) 272-282.
[54] C.A. Carrasco, V. Vergara, R. Benavente, N. Mingolo, J.C. Rı́os, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Mater. Charact. 48 (2002) 81-88.
[55] C.-I. Chiu, Effect of processing parameter on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, National Tsing Hua University, Master Thesis 2014.
[56] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, CIRP J. Manuf. Sci. Technol. 18 (2017) 145-151.
[57] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films 117 (1984) 243-249.
[58] U. Helmersson, B.O. Johansson, J.E. Sundgren, H.T.G. Hentzell, P. Billgren, Adhesion of titanium nitride coatings on high‐speed steels, J. Vac. Sci. Technol. A 3 (1985) 308-315.
[59] T. Polcar, N. M.G. Parreira, R. Novák, Friction and wear behaviour of CrN coating at temperatures up to 500 °C, Surf. Coat. Technol. 201 (2007) 5228-5235.
[60] S. Wilson, A.T. Alpas, Effect of temperature and sliding velocity on TiN coating wear, Surf. Coat. Technol. 94 (1997) 53-59.
[61] S. Wilson, A.T. Alpas, TiN coating wear mechanisms in dry sliding contact against high speed steel, Surf. Coat. Technol. 108 (1998) 369-376.
[62] Z. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl) N coatings, Wear 173 (1994) 13-20.
[63] S. Wilson, A.T. Alpas, Wear mechanism maps for TiN-coated high speed steel, Surf. Coat. Technol. 120 (1999) 519-527.
[64] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol. 96 (1997) 272-282.
[65] M. Abedi, A. Abdollah-zadah, A. Vicenzo, M. Bestetti, Farid. Movassagh-Alanagh, E. Damerchi, A comparative study of the mechanical and tribological properties of PECVD single layer and compositionally graded TiSiCN coatings, Ceram. Int. 45 (2019) 21200-21207.
[66] A. N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239 (2014) 20-27.
[67] V. A. Semenov, A. S. Grenadyorov, V. O. Oskirko, A. N. Zakharov, S. V. Rabotkin, I. V. Ionov, A. A. Solovyev, Comparison of plasma parameters and optical emission in DC, HiPIMS and hybrid DC+HiPIMS modes of magnetron sputtering, J. Phys. Conf. Ser. 1393 (2019) 012023.
[68] J. Keraudy, R. P. B. Viloan, M. A. Raadu, N. Brenning, D. Lundin, U. Helmersson, Bipolar HiPIMS for tailoring ion energies in thin film deposition, Surf. Coat. Technol. 359 (2019) 433-437.
[69] A. E. Ross, R. Sanginés, B. Treverrow, M. M. M. Bilek, D. R. McKenzie, Optimizing efficiency of Ti ionized deposition in HiPIMS, Plasma Sources Sci Technol 20 (2011) 035021.
[70] J. Andersson, A. P. Ehiasarian, A. Anders, Observation of Ti4+ ions in high power impulse magnetron sputtering plasma, Appl. Phys. Lett. 93 (2008) 071504.
[71] J. Lin, R. Wei, A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance, Surf. Coat. Technol. 338 (2018) 84-95.
[72] J. Wu, B.H. Wu, D.L. Ma, D. Xie, Y.P. Wu, C.Z Chen, Y.T. Li, H. Sun, N. Huang, Y.X. Leng, Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS), Surf. Coat. Technol. 315 (2017) 258-267
[73] J. Wang, Paul Munroe, Zhifeng Zhou, Zonghan Xie, Nanostructured molybdenum nitride-based coatings: Effect of nitrogen concentration on microstructure and mechanical properties, Thin Solid Films 682 (2019) 82-92.
[74] W.Z. Kang, Optimization of the deposition processing of MoNx thin films by design of experiment and single variable (nitrogen flow rate) methods, National Tsing Hua university, Master thesis, 2019.
[75] J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, J. A. Rees, Z. Wu, R. Chistyakov, B. Abraham, Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering, Surf. Coat. Technol. 203 (2009) 3676-3685.
[76] F. Fernandes, J. C. Oliveira, A. Cavaleiro, Self-lubricating TiSi(V)N thin films deposited by deep oscillation magnetron sputtering (DOMS), Surf. Coat. Technol. 308 (2016) 256-263.
[77] D. Lundin, T. Minea, J. T. Gudmundsson, High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, Elsevier Science, 2020.
[78] A. Anders, Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS), J. Appl. Phys. 121 (2017) 171101.
[79] B. Bakhit, S. Dorri, A. Kosari, A. Mol, I. Petrov, J. Birch, L. Hultman, G. Greczynski, Microstructure, mechanical, and corrosion properties of Zr1-xCrxBy diboride alloy thin films grown by hybrid high power impulse/DC magnetron co-sputtering, Appl. Surf. Sci. Volume 591 (2022) 153164.
[80] B. Gui, H. Zhou, J. Zheng, X. Liu, X. Feng, Y. Zhang, L. Yang, Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering, Ceram. Int. Volume 47 Issue 6 (2021) 8175-8183,
[81] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[82] L. V. Azaroff, M. J. Buerger, The powder method in X-ray crystallography, McGtrw-Hill, New York, 1958.
[83] G. G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A. Mat. A 82 (1909) 172-175.
[84] J. J. Wortman, R. A. Evans, Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium, J. Appl. Phys. 36 (1956) 153-156.
[85] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
[86] B.B. He, Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc. (2009) 249-328.
[87] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[88] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol. 194 (2005) 143-148.
[89] A. Qayyum, S. Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri, M. Zakaullah, Optical emission spectroscopy of Ar-N2 mixture plasma, J. Quant. Spectrosc. Ra., 107 (2007) 361-371.
[90] J. Lin, W. D. Sproul, J. J. Moore, Z. Wu, S. Lee, R. Chistyakov, B. Abraham, Recent advances in modulated pulsed power magnetron sputtering for surface engineering, JOM 63 (2011) 48-58.
[91] ICDD Kabekkodu, International Centre for Diffraction Data, 2003. PDF# 381420
[92] ICDD Kabekkodu, International Centre for Diffraction Data, 2003. PDF# 350753
[93] G. Abadias, Ph. Djemia, L. Belliard, Alloying effects on structure and elastic properties of hard coatings based on ternary transition metal (M = Ti, Zr or Ta) nitrides, Surf. Coat. Technol. 257 (2014) 129-137.
[94] K. A. Aissa, A. Achour, J. Camus, L. L. Brizoual, P. -Y. Jouan, M. -A. Djouadi, Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures, Thin Solid Films 550 (2014) 264-267.
[95] K.L. Rutherford, P.W. Hatto, C. Davies, I.M. Hutchings,Abrasive wear resistance of TiN/NbN multi-layers: measurement and neural network modelling, C.H Volumes 86–87 Part 2 (1996) 472-479,
[96] Yulin Zhang, Fei Chen, You Zhang, Menghao Liu, Yajie Pang, Jing Yan and Cuiwei Du, Corrosion and tribocorrosion behaviors of ternary TiZrN coating on 304 stainless steel prepared by HiPIMS, Mater. Today Commun. Volume 31 (2022) 103258
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *