帳號:guest(18.218.224.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴廷勳
作者(外文):Lai, Ting-Hsun
論文名稱(中文):佔空比與工作壓力對高功率脈衝磁控濺鍍製備氮化鉬鍍層結構與機械性質之影響
論文名稱(外文):Effects of Duty Cycle and Working Pressure on Structure and Mechanical Properties of Molybdenum Nitride Coatings Deposited by High Power Pulsed Magnetron Sputtering
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):吳芳賓
林郁洧
口試委員(外文):Wu, Fan-Bean
Lin, Yu-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011508
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:91
中文關鍵詞:氮化鉬高功率脈衝磁控濺鍍織構殘留應力耐磨性週次功率誘發疲勞
外文關鍵詞:Molybdenum nitrideHPPMSTextureResidual stressWear resistancepower cycle-induced fatigue (PCIF)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:228
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的是藉由高功率脈衝磁控濺鍍 (HPPMS) 在D2鋼上製備氮化鉬鍍層並探討調整佔空比與工作氣壓對鍍層結構與機械性質的影響。實驗結果顯示,(200)織構係數隨著佔空比與工作氣壓的下降而上升。佔空比下降能提升靶瞬時功率密度,而工作壓力的下降能增加氣體粒子的平均自由徑。這兩項參數的下降都會使電漿粒子有更大的能量,進而增加離子穿隧效應,有利於(200)織構的生長。實驗亦發現,藉由調控佔空比能使鍍層的殘留應力從很小的張應力至壓應力。鍍層的殘留壓應力與硬度會隨著佔空比與工作氣壓下降而增加,歸因於高能量的電漿粒子會增強離子轟擊效應,在鍍層中產生較多的缺陷。鍍層經過磨耗測試後發現,在沒有發生附著問題時,磨耗率都很低從0.12 至 0.98  10-6 mm3N-1m-1,這可能是因為氮化鉬鍍層所形成氧化相,如拉曼光譜觀察到的MoO3 或 Mo4O11,這些氧化相有很強的自潤滑特性因而超越其他因素主導了磨耗率。刮痕測試顯示所有鍍層都具有較低的Lc1與相當高的Lc2,因此磨耗測試中偶爾會發生鍍層破裂剝離問題。我們建議未來使用鉬金屬介層加強附著強度以確保耐磨性來解決此問題。實驗結果發現,鍍層在矽基板上的殘留應力使用LCM(LCM)與AXS(AXS)量測時,二者的結果有顯著的差異。我們提出了功率週期誘發疲勞(PCIF)的機制來解釋這個差異,在HPPMS製備過程中,高頻的功率可能在矽基板造成往復彎曲應力,進而引發高週疲勞導致矽基板的上部裂縫成長,使得矽基板的曲率釋放而降低LCM。
The purposes of this work were to produce single phase γ-Mo2N coatings by high power pulsed magnetron sputtering (HPPMS) and to investigate the effects of duty cycle and working pressure on structure and mechanical properties of the coatings on D2 steel. The results showed that the (200) texture coefficient of γ-Mo2N coatings increased with decreasing duty cycle and working pressure. The decrease of duty cycle was associated with increasing target peak power density, and the decrease of working pressure led to increasing mean free path of plasma species. The decrease of both parameters can increase the energy of plasma species, which enhances the ion channeling effect, thereby promoting the (200) texture in the coatings. It was found that the residual stress of the coatings could be controlled from slightly tensile to compressive stress by adjusting duty cycle. The compressive residual stress and hardness of the coatings increased with decreasing duty cycle or working pressure because high-energy plasma species enhanced the ion-peening effect and generated more defects in the coatings. The wear rates of all samples were very low ranging from 0.12 to 0.98  10-6mm3N-1m-1 when no adhesion issue occurred, and the wear mechanism was mostly abrasive wear. The major factor that affected wear resistance could be the formation of self-lubricating oxide phases such as MoO3 or Mo4O11 which was confirmed by the Raman spectra. The critical loads of the coatings showed low Lc1 and fairly high Lc2, and delamination occasionally occurred. Adding a Mo interlayer is suggested to be a solution to improve the adhesion strength and ensure the wear resistance. The results showed large deviation between the residual stresses of the coatings on Si measured by LCM(LCM) and AXS(AXS). A power cycle-induced fatigue (PCIF) mechanism was proposed to account for the deviation. The high frequency power cycle during HPPMS deposition process may give rise to alternating bending stress on the Si substrate, which could induce high-cycle fatigue crack growth and caused the relaxation of bending curvature in Si substrate, and thus lowering LCM.
摘要 i
Abstract ii
Content iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Characteristics of Molybdenum Nitride 3
2.1.1 Crystal Structure of Molybdenum Nitride 4
2.1.2 Mechanical Properties of Molybdenum Nitride 6
2.2 Tribological Behavior 7
2.2.1 Adhesion Strength 7
2.2.2 Wear Resistance 7
2.2.3 Self-lubrication of Molybdenum Nitride 8
2.3 High Power Pulsed Magnetron Sputtering (HPPMS) 10
2.3.1 Advantages of HPPMS 10
2.3.2 Effect of Duty Cycle 10
2.3.3 Effect of Working Pressure 11
2.4 Effect of Process Parameters 12
2.4.1 Nitrogen Flow Rate and Substrate Bias 12
2.4.2 Substrate Temperature 13
2.4.3 Gas Ion Current Density 13
Chapter 3 Experimental Detail 14
3.1 Substrate Preparation and Deposition Procedures 14
3.2 Characterization of Compositions and Structure 18
3.2.1 Chemical Compositions 18
3.2.2 Crystal Structure and Preferred Orientation 18
3.2.3 Cross-sectional Observation and Surface Morphology 19
3.2.4 Surface Roughness 20
3.3 Characterization of Properties 20
3.3.1 Hardness and Young’s Modulus 20
3.3.2 Residual Stress 21
3.3.3 Electrical Resistivity 22
3.3.4 Scratch test 22
3.3.5 Pin-on-disk Wear Test 24
3.3.6 Wettability 25
Chapter 4 Results 27
Part I: Effect of Duty Cycle (D-series Specimens) 30
4.1 Plasma Compositions 30
4.2 Target Voltage and Current 32
4.3 Chemical Compositions and Structure 34
4.3.1 Chemical compositions 34
4.3.2 Crystal structure 34
4.3.3 Microstructure and surface roughness 36
4.3.4 Deposition rate 38
4.4 Properties 38
4.4.1 Hardness and Young’s modulus 38
4.4.2 Residual stress 39
4.4.3 Electrical resistivity 40
4.4.4 Adhesion strength 41
4.4.5 Wear resistance 44
Part II: Effect of Working Pressure 48
4.5 Target Voltage and Current 48
4.6 Chemical Compositions and Structure 50
4.6.1 Chemical compositions 50
4.6.2 Crystal structure 50
4.6.3 Microstructure and surface roughness 52
4.6.4 Deposition rate 54
4.7 Properties 54
4.7.1 Hardness and Young’s modulus 54
4.7.2 Residual stress 55
4.7.3 Electrical resistivity 56
4.7.4 Adhesion strength 56
4.8 Wear Resistance 58
4.9 Raman spectra 62
4.10 Residual Stress from LCM 62
Chapter 5 Discussion 64
5.1 Effect of Duty Cycle 64
5.1.1 Preferred orientation 64
5.1.2 Residual stress and hardness 65
5.2 Effect of Working Pressure 67
5.2.1 Preferred orientation 67
5.2.2 Residual stress and hardness 68
5.3 Differences of effect between duty cycle and working pressure 69
5.4 Differences of residual stress between LCM and AXS on Si substrate 70
5.5 Tribological Behavior 74
5.5.1 Wear resistance of γ-Mo2N coatings 74
5.5.3 Adhesion issue of γ-Mo2N coatings 75
Chapter 6 Conclusions 79
Reference 81
Appendix A AFM Images 90
Appendix B Optical spectra 91
[1] Z.B. Qi, P. Sun, F.P. Zhu, Z.C. Wang, D.L. Peng, C.H. Wu, The inverse Hall-Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692-3697.
[2] W.J. Chou, G.P. Yu, J.H. Huang, Corrosion resistance of ZrN films on AISI 304 stainless steel substrate, Surf. Coat. Technol. 167 (2003) 59-67.
[3] B.O. Johansson, J.E. Sundgren, J.E. Greene, A. Rockett, S. A. Barnett, J. Vac, Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering, Sci. Technol. A 3 (1985) 303-307.
[4] L. Hultman, Thermal stability of nitride thin films, Vacuum 57 (2000) 1-30.
[5] V. Zin, E. Miorin, S.M. Deambrosis, F. Montagner, M. Fabrizio, Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates, Tribol. Int. 119 (2018) 372-380.
[6] Upadhyay R.K., Kumaraswamidhas L.A. Investigation of monolayer–multilayer PVD nitride coating, Surf. Eng. 31(2) (2013) 123–133.
[7] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Magnéli phase formation of PVD Mo–N and W–N coatings, Surf. Coat. Technol. 201 (2006) 3335-3341.
[8] V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122 (1999) 290.
[9] T.E. Zhang, Effects of process parameters on structure and properties of molybdenum nitride thin films by high-power impulse magnetron sputtering, National Tsing Hua University, Master Thesis, 2021.
[10] H.L. Schick, Thermodynamics of certain refractory compounds, Academic Press, New York, 1966.
[11] H. Jehn, P. Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met. 58 (1978) 85-98.
[12] P Ettmayer, Das System Molybdän-Stickstoff, Monatsh. Chem. 101 (1970) 127-140.
[13] K. Inumaru, K. BabaShoji, S. Yamanaka, Synthesis and Characterization of Superconducting β-Mo2N Crystalline Phase on a Si Substrate:  An Application of Pulsed Laser Deposition to Nitride Chemistry, Chem. Mater, 17-24 (2005) 5935–5940.
[14] C. L. Bull, P. F. McMillan, E.Soignard, K. Leinenweber, Determination of the crystal structure of δ-MoN by neutron diffraction, Solid State Chem. 177 (2004) 1488-1492.
[15] A.J. Perry, A.W. Baouchi, J.H. Petersen, S.D. Pozder, Crystal structure of molybdenum nitride films made by reactive cathodic arc evaporation, Surf. Coat. Technol. 54-55 (1992) 261-265,
[16] G. Linker, H. Schmidt, C. Politis, R. Smithey and P. Ziemann, Magnetic susceptibility and defect structure of B1 phase MoN sputtered films, J. Phys. F 16 (1986) 2167.
[17] N. Schönberg, Contribution to knowledge of molybdenum-nitrogen and the tungsten-nitrogen systems, Acta Chem. Scand. 8 (1954) 204-207.
[18] O.V. Krysina, Yu.F. Ivanov, N.N. Koval, N.A. Prokopenko, V.V. Shugurov, E.A. Petrikova, O.S. Tolkachev, Composition, structure and properties of Mo-N coatings formed by the method of vacuum-arc plasma-assisted deposition, Surf. Coat. Technol. 416 (2021) 127153.
[19] K. Saito, Y. Asada, Superconductivity and structural changes of nitrogen-ion implanted Mo thin films, J. Phys. F Met. Phys. 17 (1987) 2273–2283.
[20] Y. Wang, R.Y. Lin, Amorphous molybdenum nitride thin films prepared by reactive sputter deposition, Mater. Sci. Eng. B 112 (2004) 42–49.
[21] L. Stöber, J.P. Konrath, S. Krivec, F. Patocka, S. Schwartz, A. Bittner, M. Schneider, U. Schmid, Impact of sputter deposition parameters on molybdenum nitride thin films properties, J. Micromech. Microeng. 25 (2015) 074001.
[22] Ihara, H. Ihara, Y. Kimura, K. Senzaki, H. Kezuka, and M. Hirabayashi, Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN, Phys. Rev. B 31.5 (1985) 3177.
[23] J.H Evans, K.H Jack, Acta Crystallogr. 10 (1957) 833.
[24] W.E. Pickett, B.M. Klein, D.A. Papaconstantopoulos, Theoretical prediction of MoN as a high Tc superconductor, Physica B. 107 (1981) 667-668.
[25] A. Magnéli, Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides, Acta Cryst. 6 (1953) 495–500.
[26] W. Schulz, F. Köhn, D. Kolb, M. Balzer, H. Riegel & J. Albrecht, Controlling friction and wear with anisotropic microstructures in MoN-coated surfaces, Tribol. Lett. 69 152 (2021).
[27] J. Wang, P. Munroe, Z. Zhou, Z. Xie, Nanostructured molybdenum nitride-based coatings: effect of nitrogen concentration on microstructure and mechanical properties Thin Solid Films, 682 (2019) 82-92.
[28] J. Qian, S. Li, J. Pu, Z. Cai, H. Wang, Q. Cai, P. Ju, Effect of heat treatment on structure and properties of molybdenum nitride and molybdenum carbonitride films prepared by magnetron sputtering, Surf. Coat. Technol. 374 (2019) 725-735.
[29] B. Bouaouina, A. Besnard, S.E. Abaidia, A. Airoudj, F. Bensouici, Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive RF magnetron discharge, Surf. Coat. Technol. 333 (2018) 32-38.
[30] N.M. Jennett, S. Owen-Jones, The scratch test: calibration, verification and the use of a certified reference material, Measurement Good Practice Guide 54 (2002) 32-34.
[31] J.Y. Xianga , Z.X. Lina , E. Renouxb , F.B. Wua, Microstructure evolution and indentation cracking behavior of MoN multilayer films, Surf. Coat. Technol. 350 (2018) 1020-1027.
[32] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, CIRP J. Manuf. Sci. Technol. 18 (2017) 145-151.
[33] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films 117 (1984) 243-249.
[34] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior, Wear 246 (2000) 1-11.
[35] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
[36] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239 (2014) 20-27.
[37] P.H. Mayrhofer, P.Eh. Hovsepianb, C. MittereraW.-D.Münzb, Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings, Surf. Coat. Technol. 177-178 (2004) 341-347.
[38] W. Tillmann, D. Kokalj, D. Stangier, Impact of structure on mechanical properties and oxidation behavior of magnetron sputtered cubic and hexagonal MoNx thin films, Appl. Surf. Sci. Adv. 5 (2021) 100119.
[39] T. Suszko, W. Gulbiński, J. Jagielski, The role of surface oxidation in friction processes on molybdenum nitride thin films, Surf. Coat. Technol. 194 (2005) 319-324.
[40] U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films 513 (1-2) (2006) 1-24.
[41] J.T. Gudmundsson, J. Alami, U. Helmersson, Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge, Surf. Coat. Technol. 161 (2002) 249-256.
[42] K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov, J. Vac, Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge, J. Vac. Sci. Technol. A 18 (2000) 1533-1537.
[43] A.P. Ehiasarian, R. New, W.-D. Münz, L. Hultman, U. Helmersson, V. Kouznetsov, Influence of high power densities on the composition of pulsed magnetron plasmas, Vacuum 65 (2002) 147-154.
[44] O. Baghriche, A. Zertal, A.P. Ehiasarian, S. Sanjines, C. Pulgarin, E.K. Nejman, A.W. Morawski, J. Kiwi, Advantages of highly ionized pulsed plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation, Thin Solid Films 520 (2012) 3567-3573.
[45] J.T. Gudmundsson, Ionization mechanism in the high power impulse magnetron sputtering (HiPIMS) discharge, J. Phys. Conf. Ser. 100 (2008) 082013.
[46] M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, On the film density using high power impulse magnetron sputtering, Surf. Coat. Technol. 205 (2010) 591-596.
[47] J. Daniel, P. Souček, J. Grossman, L. Zábranský, K. Bernátová, V. Buršíková, T. Fořt, P. Vašina, J. Sobota, Adhesion and dynamic impact wear of nanocomposite TiC-based coatings prepared by DCMS and HiPIMS, Int. J. Refract. Met. Hard Mater. 86 (2020) 105123.
[48] W. Tillmann, N.F. Lopes Dias, D. Stangier, W. Maus-Friedrichs, R. Gustus, C.A. Thomann, H. Moldenhauer, J. Debus, Improved adhesion of a-C and a-C:H films with a CrC interlayer on 16MnCr5 by HiPIMS-pretreatment, Surf. Coat. Technol. 375 (2019) 877-887.
[49] C.L. Chang, S.G. Shih, P.H. Chen, W.C. Chen, C.T. Ho, W.Y. Wu, Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coat. Technol. 259 (2014) 232-237.
[50] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys. 93 (2003) 9086-9094.
[51] L. Dong, D.J. Srolovitz, Texture development mechanisms in ion beam assisted deposition, J. Appl. Phys. 84 (1998) 5261-5269.
[52] N. Brenning, A. Butler, H. Hajihoseini, M. Rudolph, M.A. Raadu, J.T. Gudmundsson, T. Minea, D. Lundin, Optimization of HiPIMS discharges: The selection of pulse power, pulse length, gas pressure, and magnetic field strength, J. Vac. Sci. Technol. A 38 (2020) 033008.
[53] L.H. Shen, Q.L. Cui, J. Zhang, X.F. Li, Q. Zhou and G.T. Zou, A New Method for Preparation of Nanocrystalline Molybdenum Nitride, Chinese Phys. Lett. (2005) 3192.
[54] F.F. Klimashin, N. Koutná, H. Euchner, D. Holec, P.H. Mayrhofer, The impact of nitrogen content and vacancies on structure and mechanical properties of Mo–N thin films, J. Appl. Phys. 120 (2016) 185301.
[55] L. Stöber, J. P. Konrath, S. Krivec, F. Patocka, S. Schwarz, A. Bittner, M. Schneider, U. Schmid, Impact of sputter deposition parameters on molybdenum nitride thin film properties, J. Micromech. Microeng. 25 (2015) 074001.
[56] L. Stöber, J.P. Konrath, V. Haberl, F. Patocka, M. Schneider, U. Schmid, Nitrogen incorporation in sputter deposited molybdenum nitride thin films, J. Vac. Sci. Technol. A, 34 (2016) 021513.
[57] W.Z. Kang, Optimization of the deposition processing of MoNx thin films by design of experiment and single variable (nitrogen flow rate) methods, National Tsing Hua University, Master Thesis, 2019.
[58] C.C. Chou, Effects of nitrogen flow rate and substrate bias on structure and properties of molybdenum nitride thin films, National Tsing Hua University, Master Thesis, 2019.
[59] P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 2 (1918) 98-100.
[60] L.V. Azaroff, M.J. Buerger, The powder method in X-ray crystallography, MaGraw-Hill, New York, USA, 1958.
[61] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[62] B.O. Postolnyi, V.M. Beresnev, G. Abadias, O.V. Bondar, L. Rebouta, J.P. Araujo, A.D. Pogrebnjak, Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness, J. Alloys Compd. 725 (2017) 1188-1198.
[63] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78.
[64] A.N. Wang, C.P. Chuang, G.P. Yu, J.H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
[65] V. Hauk, Structure and residual stress analysis by nondestructive methods, 1st ed., Elsevier Science (1997).
[66] G.G. Stoney, C.A. Parsons, The Tension of Metallic Films deposited by Electrolysis, Proc. R. Soc. Lond. A 82 (1909) 172.
[67] J. J. Wortman, R. A. Evans, Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium, J. Appl. Phys. 36 (1956) 153-156.
[68] T. Hanabusa, K. Kusaka, O. Sakata, Residual stress and thermal stress observation in thin copper films, Thin Solid Films 459 (2004) 245-248.
[69] D.L. Perry, Handbook of inorganic compounds, CRC press, New York, 2016.
[70] S. Bagdade, ASM Ready Reference Thermal Properties of Metals (Materials Data Series), ASM International (2003).
[71] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol. 194 (2005) 143-148.
[72] D.K.Owens, R.C.Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741–1747.
[73] T.Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. (1805) 65–87.
[74] R.J.Good, L.A.Girifalco, A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data, J. Phys. Chem. 64 (1960) 561–565.
[75] J.Kloubek, Interaction of polar forces and their contribution to the work of adhesion, J. Adhes. 6 (1974) 293–301.
[76] J. T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, High power impulse magnetron sputtering discharge, J. Vac. Sci. Technol. A 30 (2012) 030801.
[77] J.E. Sansonetti, W.C. Martin, Handbook of basic atomic spectroscopic data, J. Phys. Chem. Ref. Data 34 (2005) 1559-2259.
[78] A. Qayyum, S. Zeb, M.A. Naveed, N.U. Rehman, S.A. Ghauri, M. Zakaullah, Optical emission spectroscopy of Ar-N2 mixture plasma, J. Quant. Spectrosc. Radiat. Transf. 107 (2007) 361-371.
[79] M.E.Curaa, X.W.Liua, U.Kanervab, S.Varjusb, A.Kiviojac, O.Söderberga, S-P.Hannula, Friction behavior of alumina/molybdenum composites and formation of MoO3−x phase at 400 °C, Tribo. Int. 87 (2015) 23-31.
[80] W. Ensinger, B. Rauschenbach, Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition, Nucl. Instrum. Methods Phys. Res. B 80-81(1993)1409-1414.
[81] J. Goodman, Mechanics applied to engineering (9th ed.), Longmans, Green and Co, New York (1930).
[82] Y.-W. Lin, P.-C. Chih, J.-H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol. 394 (2020) 125690.
[83] W. Wang, S. Zheng, J. Pu, Z. Cai, H. Wang, L. Wang, G. He, Microstructure, mechanical and tribological properties of Mo-V-N films by reactive magnetron sputtering, Surf. Coat. Technol. 387 (2020)125532.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *