|
1. J.H. Lau, Overview and outlook of through‐silicon via (TSV) and 3D integrations. Microelectronics International, 2011. 2. G. Rossi and I. Lindau, Compound formation and bonding configuration at the Si-Cu interface. Physical Review B, 1983. 28(6): p. 3597. 3. G. Rossi, I. Abbati, L. Braicovich, I. Lindau, and W. Spicer, Chemical reaction at the Ge (111)-Ag and Si (111)-Ag interfaces for small Ag coverages. Surface Science, 1981. 112(1-2): p. L765-L769. 4. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, and A. Hu, Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. The Open Surface Science Journal, 2011. 3(1). 5. L. Sun, M.-h. Chen, and L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. Journal of Alloys and Compounds, 2019. 786: p. 677-687. 6. Y.-c. Liu, S.-k. Lin, H. Zhang, S. Nagao, C. Chen, and K. Suganuma, Reactive wafer bonding with nanoscale Ag/Cu multilayers. Scripta Materialia, 2020. 184: p. 1-5. 7. J. Braeuer, J. Besser, M. Wiemer, and T. Gessner. Room-temperature reactive bonding by using nano scale multilayer systems. in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. 2011. IEEE. 8. T. Kim, M. Howlader, T. Itoh, and T. Suga, Room temperature Cu–Cu direct bonding using surface activated bonding method. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(2): p. 449-453. 9. W.-H. Lin and F.-Y. Ouyang, Electromigration behavior of screen-printing silver nanoparticles interconnects. JOM, 2019. 71(9): p. 3084-3093. 10. J.-m. Jin. “Light, Thin, Short and Small”, The Development of Semiconductor Packages. 2020; Available from: https://news.skhynix.com/light-thin-short-and-small-the-development-of-semiconductor-packages/. 11. Z. Zhong, T. Tee, and J.E. Luan, Recent advances in wire bonding, flip chip and lead‐free solder for advanced microelectronics packaging. Microelectronics International, 2007. 12. C. Hang, J. He, Z. Zhang, H. Chen, and M. Li, Low temperature bonding by infiltrating Sn3. 5Ag solder into porous Ag sheet for high temperature die attachment in power device packaging. Scientific reports, 2018. 8(1): p. 1-7. 13. A. Abd El-Rehim and H. Zahran, Investigation of microstructure and mechanical properties of Sn-xCu solder alloys. Journal of alloys and compounds, 2017. 695: p. 3666-3673. 14. E. Beyne, The 3-D interconnect technology landscape. IEEE Design & Test, 2016. 33(3): p. 8-20. 15. P.S. Ho, G. Wang, M. Ding, J.-H. Zhao, and X. Dai, Reliability issues for flip-chip packages. Microelectronics Reliability, 2004. 44(5): p. 719-737. 16. Y. Kagawa, N. Fujii, K. Aoyagi, Y. Kobayashi, S. Nishi, N. Todaka, S. Takeshita, J. Taura, H. Takahashi, and Y. Nishimura. An advanced CuCu hybrid bonding for novel stacked CMOS image sensor. in 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM). 2018. IEEE. 17. J.-Y. Juang, C.-L. Lu, K.-J. Chen, C.-C.A. Chen, P.-N. Hsu, C. Chen, and K.-N. Tu, Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient. Scientific reports, 2018. 8(1): p. 1-11. 18. C. Herring, Diffusional viscosity of a polycrystalline solid. Journal of applied physics, 1950. 21(5): p. 437-445. 19. M.J. Aziz, Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms. Applied physics letters, 1997. 70(21): p. 2810-2812. 20. C. Oh, S. Nagao, T. Sugahara, and K. Suganuma, Hillock growth dynamics for Ag stress migration bonding. Materials Letters, 2014. 137: p. 170-173. 21. C. Oh, S. Nagao, T. Kunimune, and K. Suganuma, Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films. Applied Physics Letters, 2014. 104(16): p. 161603. 22. S. Lahiri and O. Wells, Reversible hillock growth in thin films. Applied Physics Letters, 1969. 15(7): p. 234-235. 23. S. Lahiri, Stress relief and hillock formation in thin lead films. Journal of Applied Physics, 1970. 41(7): p. 3172-3176. 24. A. Presland, G. Price, and D. Trimm, Hillock formation by surface diffusion on thin silver films. Surface Science, 1972. 29(2): p. 424-434. 25. P.M. Agrawal, B.M. Rice, and D.L. Thompson, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 2002. 515(1): p. 21-35. 26. F. Nabarro, Fifty-year study of the Peierls-Nabarro stress. Materials Science and Engineering: A, 1997. 234: p. 67-76. 27. C.-M. Liu, H.-W. Lin, Y.-S. Huang, Y.-C. Chu, C. Chen, D.-R. Lyu, K.-N. Chen, and K.-N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 2015. 5(1): p. 1-11. 28. K.C. Shie, J.-Y. Juang, and C. Chen, Instant Cu-to-Cu direct bonding enabled by< 111>-oriented nanotwinned Cu bumps. Japanese Journal of Applied Physics, 2019. 59(SB): p. SBBA03. 29. W. Yang, H. Shintani, M. Akaike, and T. Suga. Low temperature Cu-Cu direct bonding using formic acid vapor pretreatment. in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). 2011. IEEE. 30. S. Kim, Y. Nam, and S.E. Kim, Effects of forming gas plasma treatment on low-temperature Cu–Cu direct bonding. Japanese Journal of Applied Physics, 2016. 55(6S3): p. 06JC02. 31. T.-C. Chou, S.-Y. Huang, P.-J. Chen, H.-W. Hu, D. Liu, C.-W. Chang, T.-H. Ni, C.-J. Chen, Y.-M. Lin, and T.-C. Chang, Electrical and reliability investigation of Cu-to-Cu bonding with silver passivation layer in 3-D integration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020. 11(1): p. 36-42. 32. D. Liu, T.-Y. Kuo, Y.-W. Liu, Z.-J. Hong, Y.-T. Chung, T.-C. Chou, H.-W. Hu, and K.-N. Chen, Investigation of low-temperature Cu–Cu direct bonding with Pt passivation layer in 3-D integration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(4): p. 573-578. 33. Z.-J. Hong, D. Liu, H.-W. Hu, C.-I. Cho, M.-W. Weng, J.-H. Liu, and K.-N. Chen, Investigation of bonding mechanism for low-temperature CuCu bonding with passivation layer. Applied Surface Science, 2022. 592: p. 153243. 34. I. Karakaya and W. Thompson, The Ag-O (silver-oxygen) system. Journal of phase equilibria, 1992. 13(2): p. 137-142. 35. L.-P. Chang, S.-Y. Huang, T.-C. Chang, and F.-Y. Ouyang, Low temperature Ag-Ag direct bonding under air atmosphere. Journal of Alloys and Compounds, 2021. 862: p. 158587. 36. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426. 37. N. Takata, K. Ikeda, F. Yoshida, H. Nakashima, and H. Abe. Grain boundary structure and its energy of< 110> symmetric tilt boundary in copper. in Materials Science Forum. 2004. Trans Tech Publ. 38. M. Bettayeb, V. Maurice, L.H. Klein, L. Lapeire, K. Verbeken, and P. Marcus, Nanoscale intergranular corrosion and relation with grain boundary character as studied in situ on copper. Journal of The Electrochemical Society, 2018. 165(11): p. C835. 39. C. RHODES and A. THOMPSON. STACKING-FAULT ENERGY IN AUSTENITIC STAINLESS-STEELS. in JOM-JOURNAL OF METALS. 1976. METALLURGICAL SOC AMER INST MINING METALL PETROL ENG INC 420 COMMONWEALTH DR …. 40. M. Liu, D. Jing, Z. Zhou, and L. Guo, Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nature communications, 2013. 4(1): p. 1-8. 41. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, and J. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Materialia, 2010. 58(6): p. 2262-2270. 42. S. Cronje, R. Kroon, W. Roos, and J. Neethling, Twinning in copper deformed at high strain rates. Bulletin of Materials Science, 2013. 36(1): p. 157-162. 43. H. Gleiter, The formation of annealing twins. Acta metallurgica, 1969. 17(12): p. 1421-1428. 44. X. Zhang, A. Misra, H. Wang, T. Shen, M. Nastasi, T. Mitchell, J. Hirth, R. Hoagland, and J. Embury, Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 2004. 52(4): p. 995-1002. 45. K. Han, J. Hirth, and J. Embury, Modeling the formation of twins and stacking faults in the Ag-Cu system. Acta materialia, 2001. 49(9): p. 1537-1540. 46. D. Bufford, H. Wang, and X. Zhang, High strength, epitaxial nanotwinned Ag films. Acta Materialia, 2011. 59(1): p. 93-101. 47. P.-C. Wu and T.-H. Chuang, Evaporation of Ag nanotwinned films on Si substrates with ion beam assistance. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(12): p. 2222-2228. 48. A. Hodge, Y. Wang, and T. Barbee Jr, Large-scale production of nano-twinned, ultrafine-grained copper. Materials Science and Engineering: A, 2006. 429(1-2): p. 272-276. 49. L.-P. Chang, J.-J. Wang, and F.-Y. Ouyang, Improvement of Ag films with highly (111) surface orientation for metal direct bonding technique: Nanotwinned structure and ion bombardment effect. Materials Chemistry and Physics, 2021. 274: p. 125159. 50. M. Hasegawa, M. Mieszala, Y. Zhang, R. Erni, J. Michler, and L. Philippe, Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467. 51. A. Matthiessen and C. Vogt, Ueber den Einfluss der Temperatur auf die elektrische Leitungsfähigkeit der Legirungen. Annalen der Physik, 1864. 198(5): p. 19-78. 52. J. Bass, Deviations from Matthiessen's rule. Advances in Physics, 1972. 21(91): p. 431-604. 53. I. Nakamichi. Electrical resistivity and grain boundaries in metals. in Materials Science Forum. 1996. Trans Tech Publ. 54. H. Yoshinaga, Measurements of the anisotropy of the dislocation resistivity in Au, Ag, and Cu. physica status solidi (b), 1966. 18(2): p. 625-636. 55. O. Anderoglu, A. Misra, H. Wang, and X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 2008. 103(9): p. 094322. 56. K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K.-N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069. 57. H. Suzuki and C. Barrett, Deformation twinning in silver-gold alloys. Acta metallurgica, 1958. 6(3): p. 156-165. 58. L. Vassamillet, Stacking Fault Probability of Noble Metal‐Zinc Alloys. Journal of Applied Physics, 1961. 32(5): p. 778-782. 59. P. Gallagher and J. Washburn, The stacking-fault energy in the Ag-In series. Philosophical Magazine, 1966. 14(131): p. 971-978. 60. A. Howie and P. Swann, Direct measurements of stacking-fault energies from observations of dislocation nodes. Philosophical Magazine, 1961. 6(70): p. 1215-1226. 61. M. Quader and R. Dodd, The Stacking‐Fault Energies of Ag (Mn) and Cu (Mn) Solid Solutions. Journal of Applied Physics, 1968. 39(10): p. 4726-4728. 62. P. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy. Metallurgical Transactions, 1970. 1(9): p. 2429-2461. 63. A. Ruff Jr and L. Ives, Dislocation node determinations of the stacking fault energy in silver-tin alloys. Acta Metallurgica, 1967. 15(2): p. 189-198. 64. L. Vassamillet and T. Massalski, Stacking Fault Probabilities of Some Internoble Metal Alloys. Journal of Applied Physics, 1963. 34(11): p. 3402-3404. 65. P. Thornton, T. Mitchell, and P. Hirsch, The dependence of cross-slip on stacking-fault energy in face-centred cubic metals and alloys. Philosophical Magazine, 1962. 7(80): p. 1349-1369. 66. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, and Z.-K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad, 2004. 28(1): p. 79-90. 67. I. Ames, F. d'Heurle, and R. Horstmann, Reduction of electromigration in aluminum films by copper doping. IBM Journal of Research and Development, 1970. 14(4): p. 461-463. 68. K. Lee, C. Hu, and K.-N. Tu, In situ scanning electron microscope comparison studies on electromigration of Cu and Cu (Sn) alloys for advanced chip interconnects. Journal of applied physics, 1995. 78(7): p. 4428-4437. 69. A. Kawecki, T. Knych, E. Sieja-Smaga, A. Mamala, P. Kwaśniewski, G. Kiesiewicz, B. Smyrak, and A. Pacewicz, Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires. Archives of Metallurgy and Materials, 2012. 57: p. 1261-1270. 70. J.F. Shackelford and W. Alexander, CRC materials science and engineering handbook. 2000: CRC press. 71. S.-k. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.-c. Liu, S.-g. Lin, and K. Suganuma, Nano-volcanic eruption of silver. Scientific reports, 2016. 6(1): p. 1-9. 72. T. Ishitani and R. Shimizu, Computer simulation of knock-on effect under ion bombardment. Physics Letters A, 1974. 46(7): p. 487-488. 73. D.L. Smith and D.W. Hoffman, Thin-film deposition: principles and practice. Physics Today, 1996. 49(4): p. 60. 74. P. Sigmund, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical review, 1969. 184(2): p. 383. 75. P. Sigmund, Sputtering by ion bombardment theoretical concepts. Sputtering by particle bombardment I, 1981: p. 9-71. 76. D. Halliday, R. Resnick, and J. Walker, Fundamentals of physics. 2013: John Wiley & Sons. 77. P.J. Kelly and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172. 78. B.A. Movchan and A. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969. 79. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670. 80. J.A. Thornton. Structure-zone models of thin films. in Modeling of Optical Thin Films. 1988. International Society for Optics and Photonics. 81. R. Carel, C. Thompson, and H. Frost, Computer simulation of strain energy effects vs surface and interface energy effects on grain growth in thin films. Acta materialia, 1996. 44(6): p. 2479-2494. 82. S.C. Seel, R. Carel, and C.V. Thompson, Texture Maps for Orientation Evolution During Grain Growth in Thin Films. MRS Online Proceedings Library (OPL), 1995. 403. 83. C.V. Thompson and R. Carel, Texture development in polycrystalline thin films. Materials Science and Engineering: B, 1995. 32(3): p. 211-219. 84. S. Bull, A. Jones, and A. McCabe, Residual stress in ion-assisted coatings. Surface and coatings technology, 1992. 54: p. 173-179. 85. D. Mattox, Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. 7(3): p. 1105-1114. 86. J. Musil, V. Poulek, V. Valvoda, R. Kužel Jr, H. Jehn, and M. Baumgärtner, Relation of deposition conditions of Ti-N films prepared by dc magnetron sputtering to their microstructure and macrostress. Surface and Coatings Technology, 1993. 60(1-3): p. 484-488. 87. A.J. Bushby, K.M. P'ng, R.D. Young, C. Pinali, C. Knupp, and A.J. Quantock, Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nature protocols, 2011. 6(6): p. 845-858. 88. L. Rayleigh, XXXI. Investigations in optics, with special reference to the spectroscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1879. 8(49): p. 261-274. 89. K. He, N. Chen, C. Wang, L. Wei, and J. Chen, Method for determining crystal grain size by x‐ray diffraction. Crystal Research and Technology, 2018. 53(2): p. 1700157. 90. J.I. Langford and A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 1978. 11(2): p. 102-113. 91. J. Gao, W. Jie, Y. Yuan, T. Wang, G. Zha, and J. Tong, Dependence of film texture on substrate and growth conditions for CdTe films deposited by close-spaced sublimation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011. 29(5): p. 051507. 92. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron backscatter diffraction in materials science. Vol. 2. 2009: Springer. 93. F. Smits, Measurement of sheet resistivities with the four‐point probe. Bell System Technical Journal, 1958. 37(3): p. 711-718. 94. L.B. Valdes, Resistivity measurements on germanium for transistors. Proceedings of the IRE, 1954. 42(2): p. 420-427. 95. Y.-Y. Chen and J.-Y. Juang, Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films. Measurement Science and Technology, 2016. 27(7): p. 074006. 96. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583. 97. T. Tsui, W. Oliver, and G. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. Journal of Materials Research, 1996. 11(3): p. 752-759. 98. A. Fischer-Cripps, P. Karvankova, and S. Vepřek, On the measurement of hardness of super-hard coatings. Surface and Coatings Technology, 2006. 200(18-19): p. 5645-5654. 99. Y. Chen, J. Hu, Y. Yang, J. Zhang, S. Chen, S. Wang, S. Wang, and M. Xie. First-Principles Study on Solution Strengthening Effect of Cu and Zn in Ag Alloy. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing. 100. C.-H. Ma, J.-H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin solid films, 2002. 418(2): p. 73-78. 101. TOHNICHI torque handbook. 2019: TOHNICHI America. p. 35-36. 102. M. CHOWDHURY, D. NURUZZAMAN, and R. Biplov, Experimental investigation of friction coefficient and wear rate of stainless steel 304 sliding against smooth and rough mild steel counterfaces. Gazi University Journal of Science, 2013. 26(4): p. 597-609. 103. M. Caro, L.K. Béland, G.D. Samolyuk, R.E. Stoller, and A. Caro, Lattice thermal conductivity of multi-component alloys. Journal of Alloys and Compounds, 2015. 648: p. 408-413. 104. Z. Tian, H. Yan, Q. Peng, L.J. Guo, S. Zhou, C. Ding, P. Li, and Q. Luo, Atomistic Insights into Aluminum Doping Effect on Surface Roughness of Deposited Ultra-Thin Silver Films. Nanomaterials, 2021. 11(1): p. 158. 105. A. Reinhardt, Phase behavior of empirical potentials of titanium dioxide. The Journal of Chemical Physics, 2019. 151(6): p. 064505. 106. A.K. Al‐Matar and D.A. Rockstraw, A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. Journal of computational chemistry, 2004. 25(5): p. 660-668. 107. D. Gu, C. Zhang, Y.-K. Wu, and L.J. Guo, Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. Acs Nano, 2014. 8(10): p. 10343-10351. 108. E.A. Brandes and G. Brook, Smithells metals reference book. 2013: Elsevier. 109. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. Hundley, and X. Zhang, Epitaxial nanotwinned Cu films with high strength and high conductivity. Applied Physics Letters, 2008. 93(8): p. 083108. 110. X. Feng, W. Fu, J. Zhang, J. Zhao, J. Li, K. Wu, G. Liu, and J. Sun, Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films. Scripta Materialia, 2017. 139: p. 71-76. 111. C. Schuh, T. Nieh, and H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Materialia, 2003. 51(2): p. 431-443. 112. Z. Ma, Y. Zhou, S. Long, and C. Lu, Residual stress effect on hardness and yield strength of Ni thin film. Surface and Coatings Technology, 2012. 207: p. 305-309. 113. W. Liu, Y. Wu, J. He, and T. Nieh, ZP LuGrain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy Scr. Mater, 2013. 68: p. 526-529. 114. X. Qin, X. Wu, and L. Zhang, The microhardness of nanocrystalline silver. Nanostructured materials, 1995. 5(1): p. 101-110. 115. T.H. Courtney, Mechanical behavior of materials. 2005: Waveland Press. 116. K. Lu, L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. science, 2009. 324(5925): p. 349-352. 117. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010. 464(7290): p. 877-880. 118. T. Hanabusa, K. Kusaka, and O. Sakata, Residual stress and thermal stress observation in thin copper films. Thin solid films, 2004. 459(1-2): p. 245-248. 119. Y.-S. Huang, C.-M. Liu, W.-L. Chiu, and C. Chen, Grain growth in electroplated (111)-oriented nanotwinned Cu. Scripta Materialia, 2014. 89: p. 5-8. 120. Y. Zhao, T.A. Furnish, M.E. Kassner, and A.M. Hodge, Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research, 2012. 27(24): p. 3049-3057. 121. C. Saldana, T. Murthy, M. Shankar, E. Stach, and S. Chandrasekar, Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag. Applied Physics Letters, 2009. 94(2): p. 021910. 122. S. Piccinin, C. Stampfl, and M. Scheffler, First-principles investigation of Ag-Cu alloy surfaces in an oxidizing environment. Physical Review B, 2008. 77(7): p. 075426. 123. E. Orowan, Symposium on internal stresses in metals and alloys. Institute of Metals, London, 1948: p. 451. 124. E. Nes, N. Ryum, and O. Hunderi, On the Zener drag. Acta Metallurgica, 1985. 33(1): p. 11-22. 125. S. Lee, D. Chatain, C.H. Liebscher, and G. Dehm, Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2021. 203: p. 114044.
|