帳號:guest(3.148.112.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李俊諺
作者(外文):Li, Chun-Yen
論文名稱(中文):共濺鍍奈米雙晶銅銀合金薄膜之微結構、性質與低溫直接接合應用探討
論文名稱(外文):Investigation of microstructure, properties and low-temperature direct bonding application of co-sputtering nano-twinned Cu-Ag alloy thin films
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳智
廖建能
口試委員(外文):Chen, Chih
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011507
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:141
中文關鍵詞:共濺鍍接合銅銀合金奈米雙晶薄膜
外文關鍵詞:Co-sputteringBondingCu-AgNanotwinsFilms
相關次數:
  • 推薦推薦:0
  • 點閱點閱:841
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,在電子產品需要提升效能的趨勢下,為了增加電晶體的密度因此元件尺寸日趨微縮,使得在傳統焊錫應用於電子封裝時介金屬化合物體積占比逐漸提升,由於介金屬化合物質地較脆,且具有較差的導電性,因此在元件微縮的趨勢下可靠度與導電性的問題會限制了焊錫的使用。為了因應此發展將金屬接點取代了原先性質較差的焊錫,於是金屬-金屬直接接合被視為可以取代傳統焊錫的封裝方式之一,而本實驗室也成功發展出使用具有高(111)優選方向之濺鍍奈米雙晶銀薄膜達成低溫大氣環境下的銀-銀接合。為了在不明顯影響薄膜電性下進一步提升銀接點的機械強度,我們提出利用直流磁控濺鍍系統,以共濺鍍的方式在銀薄膜參雜低含量的銅,且在此次研究中成功透過此方式製備出含有2.3至6.6 at%銅的銅銀薄膜,並在微量銅引進後仍然維持高密度的奈米雙晶結構,其薄膜表面呈現高(111)優選方向晶粒分布的同時也因為銅的引進而具有更平坦的薄膜表面,以利應用於低溫直接接合。銅參雜後薄膜有了硬度上的提升,其微量的薄膜電阻率提升也仍在三維積體電路封裝適用範圍內。此次研究將製備好的薄膜進行熱壓接合,並成功於大氣環境190℃的接合溫度下以30MPa的接合壓力成功在10分鐘內將此共濺鍍銅銀合金薄膜直接接合,於大氣環境下接合的銅銀接點性質也會在本次研究中進行介紹與討論。本實驗結果提供了新的方向以優化奈米雙晶銀薄膜的性質,使其更具有潛力能匹配於電子封裝中低溫直接接合的實際應用上。
In recent years, the size scaling of electronic devices and the increasing integration intensity increase the volume fraction of the intermetallic compounds (IMCs) in solder joints, which results in the reliability issues because IMCs are usually brittle and possess high electrical resistance. Metal-to-metal direct bonding process has been regarded as a potential way to replace traditional soldering process, and we have developed Ag-Ag direct bonding at low temperature under air atmosphere by using sputtering highly-(111) preferred nano-twinned Ag thin films. To further improve the mechanical properties of Ag thin films with negligible effect on electrical conductivity, we propose to dope a little content of Cu in nano-twinned Ag thin films by DC co-sputtering process. In this study, we successfully deposited Ag thin films with 2.3~6.6 at% Cu. The high density of nano-twinned structure with columnar grains was observed in all as-deposited Cu-Ag films. By adding a little content of Cu in Ag thin films, the Ag films exhibit lower surface roughness and higher density of nanotwins with highly (111)-preferred surface orientation, which benefits applications of metal-to-metal direct bonding. With doping Cu, the Cu-Ag films show higher hardness and the resistivity of films increases slightly, which is still suitable for electrical devices in 3D-IC technology. Moreover, we achieved direct bonding under ambient atmosphere by using the Cu-Ag thin films at 190℃ with 30MPa in 10 minutes, and the properties of bonding samples would be also discussed. This research provides a method to optimize the nano-twinned Ag films, which can be used as a promising structural material for metal direct bonding technology.
摘要 i
Abstract ii
致謝 iii
目錄 ix
圖目錄 xiii
表目錄 xx
第一章 緒論 1
第二章 文獻回顧 3
2.1 傳統焊錫於電子封裝所面臨之挑戰 3
2.2 金屬-金屬直接接合技術 6
2.2.1 熱壓接合機制 7
2.2.2 原子表面擴散影響因素 8
2.2.2.1 接合壓力 9
2.2.2.2 接合溫度 10
2.2.2.3 原子堆積平面 11
2.2.2.4 表面原生氧化層 14
2.2.3 銀-銀低溫直接接合優勢及劣勢 15
2.3 奈米雙晶薄膜 18
2.3.1 奈米雙晶結構 18
2.3.2 奈米雙晶薄膜製備 22
2.3.3 奈米雙晶薄膜優異性質 27
2.3.4 合金化與雙晶結構及接合應用之關係 30
2.4 濺鍍製程 35
2.4.1 濺鍍原理及製程 35
2.4.2 直流非平衡式磁控濺鍍系統 39
2.4.3 基板端之離子轟擊效應 41
第三章 實驗方法 47
3.1 濺鍍系統及共濺鍍薄膜製程 48
3.2 奈米雙晶薄膜之微結構與性質分析方法 51
3.2.1 薄膜微結構及厚度量測分析:聚焦離子束/掃描式電子顯微鏡(FIB/SEM)及穿透式電子顯微鏡(TEM) 51
3.2.2 薄膜成分測定分析:能量散射光譜儀(EDX) 54
3.2.3 薄膜成分縱深分析:化學分析電子能譜儀(AES/ESCA) 56
3.2.4 織構優選方向及薄膜晶體結構分析:X光繞射儀(XRD) 56
3.2.5 薄膜表面晶向及晶體結構分析:電子背向散射繞射儀(EBSD) 59
3.2.6 表面粗糙度量測分析:掃描式探針顯微鏡(SPM) 60
3.2.7 電阻率量測分析:四點探針(Four-point probe) 61
3.2.8 薄膜硬度量測分析:奈米壓痕機械測試儀(Nanoindenter) 64
3.2.9 薄膜殘留應力量測分析:XRD cos2α sin2ψ方法 67
3.3 共濺鍍奈米雙晶銅銀薄膜之熱穩定性分析 68
3.4 低溫共濺鍍奈米雙晶銅銀薄膜直接接合及測試 70
3.4.1 共濺鍍銅銀薄膜之低溫直接接合 70
3.4.2 薄膜接合強度測試 74
第四章 結果與討論 75
4.1 共濺鍍奈米雙晶銅銀薄膜之微結構與物理性質 75
4.1.1 薄膜成分分析 75
4.1.2 薄膜表面形貌及微結構分析 78
4.1.3 薄膜晶體結構優選方向及表面晶向分布分析 88
4.1.4 薄膜電阻率及硬度分析 94
4.1.5 銅銀薄膜微結構及性質總結 101
4.2 共濺鍍奈米雙晶銅銀薄膜之低溫接合應用 102
4.2.1 熱處理後薄膜表面形貌及微結構分析 102
4.2.2 大氣熱處理後薄膜縱深元素分布分析 111
4.2.3 熱處理後薄膜晶體結構及織構優選方向分析 115
4.2.4 熱處理後薄膜硬度及電阻率分析 120
4.2.5 共濺鍍奈米雙晶銅銀薄膜之低溫直接接合接點微結構及性質 124
第五章 結論 130
參考文獻 132

1. J.H. Lau, Overview and outlook of through‐silicon via (TSV) and 3D integrations. Microelectronics International, 2011.
2. G. Rossi and I. Lindau, Compound formation and bonding configuration at the Si-Cu interface. Physical Review B, 1983. 28(6): p. 3597.
3. G. Rossi, I. Abbati, L. Braicovich, I. Lindau, and W. Spicer, Chemical reaction at the Ge (111)-Ag and Si (111)-Ag interfaces for small Ag coverages. Surface Science, 1981. 112(1-2): p. L765-L769.
4. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, and A. Hu, Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. The Open Surface Science Journal, 2011. 3(1).
5. L. Sun, M.-h. Chen, and L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. Journal of Alloys and Compounds, 2019. 786: p. 677-687.
6. Y.-c. Liu, S.-k. Lin, H. Zhang, S. Nagao, C. Chen, and K. Suganuma, Reactive wafer bonding with nanoscale Ag/Cu multilayers. Scripta Materialia, 2020. 184: p. 1-5.
7. J. Braeuer, J. Besser, M. Wiemer, and T. Gessner. Room-temperature reactive bonding by using nano scale multilayer systems. in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. 2011. IEEE.
8. T. Kim, M. Howlader, T. Itoh, and T. Suga, Room temperature Cu–Cu direct bonding using surface activated bonding method. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(2): p. 449-453.
9. W.-H. Lin and F.-Y. Ouyang, Electromigration behavior of screen-printing silver nanoparticles interconnects. JOM, 2019. 71(9): p. 3084-3093.
10. J.-m. Jin. “Light, Thin, Short and Small”, The Development of Semiconductor Packages. 2020; Available from: https://news.skhynix.com/light-thin-short-and-small-the-development-of-semiconductor-packages/.
11. Z. Zhong, T. Tee, and J.E. Luan, Recent advances in wire bonding, flip chip and lead‐free solder for advanced microelectronics packaging. Microelectronics International, 2007.
12. C. Hang, J. He, Z. Zhang, H. Chen, and M. Li, Low temperature bonding by infiltrating Sn3. 5Ag solder into porous Ag sheet for high temperature die attachment in power device packaging. Scientific reports, 2018. 8(1): p. 1-7.
13. A. Abd El-Rehim and H. Zahran, Investigation of microstructure and mechanical properties of Sn-xCu solder alloys. Journal of alloys and compounds, 2017. 695: p. 3666-3673.
14. E. Beyne, The 3-D interconnect technology landscape. IEEE Design & Test, 2016. 33(3): p. 8-20.
15. P.S. Ho, G. Wang, M. Ding, J.-H. Zhao, and X. Dai, Reliability issues for flip-chip packages. Microelectronics Reliability, 2004. 44(5): p. 719-737.
16. Y. Kagawa, N. Fujii, K. Aoyagi, Y. Kobayashi, S. Nishi, N. Todaka, S. Takeshita, J. Taura, H. Takahashi, and Y. Nishimura. An advanced CuCu hybrid bonding for novel stacked CMOS image sensor. in 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM). 2018. IEEE.
17. J.-Y. Juang, C.-L. Lu, K.-J. Chen, C.-C.A. Chen, P.-N. Hsu, C. Chen, and K.-N. Tu, Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient. Scientific reports, 2018. 8(1): p. 1-11.
18. C. Herring, Diffusional viscosity of a polycrystalline solid. Journal of applied physics, 1950. 21(5): p. 437-445.
19. M.J. Aziz, Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms. Applied physics letters, 1997. 70(21): p. 2810-2812.
20. C. Oh, S. Nagao, T. Sugahara, and K. Suganuma, Hillock growth dynamics for Ag stress migration bonding. Materials Letters, 2014. 137: p. 170-173.
21. C. Oh, S. Nagao, T. Kunimune, and K. Suganuma, Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films. Applied Physics Letters, 2014. 104(16): p. 161603.
22. S. Lahiri and O. Wells, Reversible hillock growth in thin films. Applied Physics Letters, 1969. 15(7): p. 234-235.
23. S. Lahiri, Stress relief and hillock formation in thin lead films. Journal of Applied Physics, 1970. 41(7): p. 3172-3176.
24. A. Presland, G. Price, and D. Trimm, Hillock formation by surface diffusion on thin silver films. Surface Science, 1972. 29(2): p. 424-434.
25. P.M. Agrawal, B.M. Rice, and D.L. Thompson, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 2002. 515(1): p. 21-35.
26. F. Nabarro, Fifty-year study of the Peierls-Nabarro stress. Materials Science and Engineering: A, 1997. 234: p. 67-76.
27. C.-M. Liu, H.-W. Lin, Y.-S. Huang, Y.-C. Chu, C. Chen, D.-R. Lyu, K.-N. Chen, and K.-N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 2015. 5(1): p. 1-11.
28. K.C. Shie, J.-Y. Juang, and C. Chen, Instant Cu-to-Cu direct bonding enabled by< 111>-oriented nanotwinned Cu bumps. Japanese Journal of Applied Physics, 2019. 59(SB): p. SBBA03.
29. W. Yang, H. Shintani, M. Akaike, and T. Suga. Low temperature Cu-Cu direct bonding using formic acid vapor pretreatment. in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). 2011. IEEE.
30. S. Kim, Y. Nam, and S.E. Kim, Effects of forming gas plasma treatment on low-temperature Cu–Cu direct bonding. Japanese Journal of Applied Physics, 2016. 55(6S3): p. 06JC02.
31. T.-C. Chou, S.-Y. Huang, P.-J. Chen, H.-W. Hu, D. Liu, C.-W. Chang, T.-H. Ni, C.-J. Chen, Y.-M. Lin, and T.-C. Chang, Electrical and reliability investigation of Cu-to-Cu bonding with silver passivation layer in 3-D integration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020. 11(1): p. 36-42.
32. D. Liu, T.-Y. Kuo, Y.-W. Liu, Z.-J. Hong, Y.-T. Chung, T.-C. Chou, H.-W. Hu, and K.-N. Chen, Investigation of low-temperature Cu–Cu direct bonding with Pt passivation layer in 3-D integration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(4): p. 573-578.
33. Z.-J. Hong, D. Liu, H.-W. Hu, C.-I. Cho, M.-W. Weng, J.-H. Liu, and K.-N. Chen, Investigation of bonding mechanism for low-temperature CuCu bonding with passivation layer. Applied Surface Science, 2022. 592: p. 153243.
34. I. Karakaya and W. Thompson, The Ag-O (silver-oxygen) system. Journal of phase equilibria, 1992. 13(2): p. 137-142.
35. L.-P. Chang, S.-Y. Huang, T.-C. Chang, and F.-Y. Ouyang, Low temperature Ag-Ag direct bonding under air atmosphere. Journal of Alloys and Compounds, 2021. 862: p. 158587.
36. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426.
37. N. Takata, K. Ikeda, F. Yoshida, H. Nakashima, and H. Abe. Grain boundary structure and its energy of< 110> symmetric tilt boundary in copper. in Materials Science Forum. 2004. Trans Tech Publ.
38. M. Bettayeb, V. Maurice, L.H. Klein, L. Lapeire, K. Verbeken, and P. Marcus, Nanoscale intergranular corrosion and relation with grain boundary character as studied in situ on copper. Journal of The Electrochemical Society, 2018. 165(11): p. C835.
39. C. RHODES and A. THOMPSON. STACKING-FAULT ENERGY IN AUSTENITIC STAINLESS-STEELS. in JOM-JOURNAL OF METALS. 1976. METALLURGICAL SOC AMER INST MINING METALL PETROL ENG INC 420 COMMONWEALTH DR ….
40. M. Liu, D. Jing, Z. Zhou, and L. Guo, Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nature communications, 2013. 4(1): p. 1-8.
41. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, and J. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Materialia, 2010. 58(6): p. 2262-2270.
42. S. Cronje, R. Kroon, W. Roos, and J. Neethling, Twinning in copper deformed at high strain rates. Bulletin of Materials Science, 2013. 36(1): p. 157-162.
43. H. Gleiter, The formation of annealing twins. Acta metallurgica, 1969. 17(12): p. 1421-1428.
44. X. Zhang, A. Misra, H. Wang, T. Shen, M. Nastasi, T. Mitchell, J. Hirth, R. Hoagland, and J. Embury, Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 2004. 52(4): p. 995-1002.
45. K. Han, J. Hirth, and J. Embury, Modeling the formation of twins and stacking faults in the Ag-Cu system. Acta materialia, 2001. 49(9): p. 1537-1540.
46. D. Bufford, H. Wang, and X. Zhang, High strength, epitaxial nanotwinned Ag films. Acta Materialia, 2011. 59(1): p. 93-101.
47. P.-C. Wu and T.-H. Chuang, Evaporation of Ag nanotwinned films on Si substrates with ion beam assistance. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(12): p. 2222-2228.
48. A. Hodge, Y. Wang, and T. Barbee Jr, Large-scale production of nano-twinned, ultrafine-grained copper. Materials Science and Engineering: A, 2006. 429(1-2): p. 272-276.
49. L.-P. Chang, J.-J. Wang, and F.-Y. Ouyang, Improvement of Ag films with highly (111) surface orientation for metal direct bonding technique: Nanotwinned structure and ion bombardment effect. Materials Chemistry and Physics, 2021. 274: p. 125159.
50. M. Hasegawa, M. Mieszala, Y. Zhang, R. Erni, J. Michler, and L. Philippe, Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467.
51. A. Matthiessen and C. Vogt, Ueber den Einfluss der Temperatur auf die elektrische Leitungsfähigkeit der Legirungen. Annalen der Physik, 1864. 198(5): p. 19-78.
52. J. Bass, Deviations from Matthiessen's rule. Advances in Physics, 1972. 21(91): p. 431-604.
53. I. Nakamichi. Electrical resistivity and grain boundaries in metals. in Materials Science Forum. 1996. Trans Tech Publ.
54. H. Yoshinaga, Measurements of the anisotropy of the dislocation resistivity in Au, Ag, and Cu. physica status solidi (b), 1966. 18(2): p. 625-636.
55. O. Anderoglu, A. Misra, H. Wang, and X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 2008. 103(9): p. 094322.
56. K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K.-N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069.
57. H. Suzuki and C. Barrett, Deformation twinning in silver-gold alloys. Acta metallurgica, 1958. 6(3): p. 156-165.
58. L. Vassamillet, Stacking Fault Probability of Noble Metal‐Zinc Alloys. Journal of Applied Physics, 1961. 32(5): p. 778-782.
59. P. Gallagher and J. Washburn, The stacking-fault energy in the Ag-In series. Philosophical Magazine, 1966. 14(131): p. 971-978.
60. A. Howie and P. Swann, Direct measurements of stacking-fault energies from observations of dislocation nodes. Philosophical Magazine, 1961. 6(70): p. 1215-1226.
61. M. Quader and R. Dodd, The Stacking‐Fault Energies of Ag (Mn) and Cu (Mn) Solid Solutions. Journal of Applied Physics, 1968. 39(10): p. 4726-4728.
62. P. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy. Metallurgical Transactions, 1970. 1(9): p. 2429-2461.
63. A. Ruff Jr and L. Ives, Dislocation node determinations of the stacking fault energy in silver-tin alloys. Acta Metallurgica, 1967. 15(2): p. 189-198.
64. L. Vassamillet and T. Massalski, Stacking Fault Probabilities of Some Internoble Metal Alloys. Journal of Applied Physics, 1963. 34(11): p. 3402-3404.
65. P. Thornton, T. Mitchell, and P. Hirsch, The dependence of cross-slip on stacking-fault energy in face-centred cubic metals and alloys. Philosophical Magazine, 1962. 7(80): p. 1349-1369.
66. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, and Z.-K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad, 2004. 28(1): p. 79-90.
67. I. Ames, F. d'Heurle, and R. Horstmann, Reduction of electromigration in aluminum films by copper doping. IBM Journal of Research and Development, 1970. 14(4): p. 461-463.
68. K. Lee, C. Hu, and K.-N. Tu, In situ scanning electron microscope comparison studies on electromigration of Cu and Cu (Sn) alloys for advanced chip interconnects. Journal of applied physics, 1995. 78(7): p. 4428-4437.
69. A. Kawecki, T. Knych, E. Sieja-Smaga, A. Mamala, P. Kwaśniewski, G. Kiesiewicz, B. Smyrak, and A. Pacewicz, Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires. Archives of Metallurgy and Materials, 2012. 57: p. 1261-1270.
70. J.F. Shackelford and W. Alexander, CRC materials science and engineering handbook. 2000: CRC press.
71. S.-k. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.-c. Liu, S.-g. Lin, and K. Suganuma, Nano-volcanic eruption of silver. Scientific reports, 2016. 6(1): p. 1-9.
72. T. Ishitani and R. Shimizu, Computer simulation of knock-on effect under ion bombardment. Physics Letters A, 1974. 46(7): p. 487-488.
73. D.L. Smith and D.W. Hoffman, Thin-film deposition: principles and practice. Physics Today, 1996. 49(4): p. 60.
74. P. Sigmund, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical review, 1969. 184(2): p. 383.
75. P. Sigmund, Sputtering by ion bombardment theoretical concepts. Sputtering by particle bombardment I, 1981: p. 9-71.
76. D. Halliday, R. Resnick, and J. Walker, Fundamentals of physics. 2013: John Wiley & Sons.
77. P.J. Kelly and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
78. B.A. Movchan and A. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969.
79. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
80. J.A. Thornton. Structure-zone models of thin films. in Modeling of Optical Thin Films. 1988. International Society for Optics and Photonics.
81. R. Carel, C. Thompson, and H. Frost, Computer simulation of strain energy effects vs surface and interface energy effects on grain growth in thin films. Acta materialia, 1996. 44(6): p. 2479-2494.
82. S.C. Seel, R. Carel, and C.V. Thompson, Texture Maps for Orientation Evolution During Grain Growth in Thin Films. MRS Online Proceedings Library (OPL), 1995. 403.
83. C.V. Thompson and R. Carel, Texture development in polycrystalline thin films. Materials Science and Engineering: B, 1995. 32(3): p. 211-219.
84. S. Bull, A. Jones, and A. McCabe, Residual stress in ion-assisted coatings. Surface and coatings technology, 1992. 54: p. 173-179.
85. D. Mattox, Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. 7(3): p. 1105-1114.
86. J. Musil, V. Poulek, V. Valvoda, R. Kužel Jr, H. Jehn, and M. Baumgärtner, Relation of deposition conditions of Ti-N films prepared by dc magnetron sputtering to their microstructure and macrostress. Surface and Coatings Technology, 1993. 60(1-3): p. 484-488.
87. A.J. Bushby, K.M. P'ng, R.D. Young, C. Pinali, C. Knupp, and A.J. Quantock, Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nature protocols, 2011. 6(6): p. 845-858.
88. L. Rayleigh, XXXI. Investigations in optics, with special reference to the spectroscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1879. 8(49): p. 261-274.
89. K. He, N. Chen, C. Wang, L. Wei, and J. Chen, Method for determining crystal grain size by x‐ray diffraction. Crystal Research and Technology, 2018. 53(2): p. 1700157.
90. J.I. Langford and A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 1978. 11(2): p. 102-113.
91. J. Gao, W. Jie, Y. Yuan, T. Wang, G. Zha, and J. Tong, Dependence of film texture on substrate and growth conditions for CdTe films deposited by close-spaced sublimation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011. 29(5): p. 051507.
92. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron backscatter diffraction in materials science. Vol. 2. 2009: Springer.
93. F. Smits, Measurement of sheet resistivities with the four‐point probe. Bell System Technical Journal, 1958. 37(3): p. 711-718.
94. L.B. Valdes, Resistivity measurements on germanium for transistors. Proceedings of the IRE, 1954. 42(2): p. 420-427.
95. Y.-Y. Chen and J.-Y. Juang, Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films. Measurement Science and Technology, 2016. 27(7): p. 074006.
96. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583.
97. T. Tsui, W. Oliver, and G. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. Journal of Materials Research, 1996. 11(3): p. 752-759.
98. A. Fischer-Cripps, P. Karvankova, and S. Vepřek, On the measurement of hardness of super-hard coatings. Surface and Coatings Technology, 2006. 200(18-19): p. 5645-5654.
99. Y. Chen, J. Hu, Y. Yang, J. Zhang, S. Chen, S. Wang, S. Wang, and M. Xie. First-Principles Study on Solution Strengthening Effect of Cu and Zn in Ag Alloy. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
100. C.-H. Ma, J.-H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin solid films, 2002. 418(2): p. 73-78.
101. TOHNICHI torque handbook. 2019: TOHNICHI America. p. 35-36.
102. M. CHOWDHURY, D. NURUZZAMAN, and R. Biplov, Experimental investigation of friction coefficient and wear rate of stainless steel 304 sliding against smooth and rough mild steel counterfaces. Gazi University Journal of Science, 2013. 26(4): p. 597-609.
103. M. Caro, L.K. Béland, G.D. Samolyuk, R.E. Stoller, and A. Caro, Lattice thermal conductivity of multi-component alloys. Journal of Alloys and Compounds, 2015. 648: p. 408-413.
104. Z. Tian, H. Yan, Q. Peng, L.J. Guo, S. Zhou, C. Ding, P. Li, and Q. Luo, Atomistic Insights into Aluminum Doping Effect on Surface Roughness of Deposited Ultra-Thin Silver Films. Nanomaterials, 2021. 11(1): p. 158.
105. A. Reinhardt, Phase behavior of empirical potentials of titanium dioxide. The Journal of Chemical Physics, 2019. 151(6): p. 064505.
106. A.K. Al‐Matar and D.A. Rockstraw, A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. Journal of computational chemistry, 2004. 25(5): p. 660-668.
107. D. Gu, C. Zhang, Y.-K. Wu, and L.J. Guo, Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. Acs Nano, 2014. 8(10): p. 10343-10351.
108. E.A. Brandes and G. Brook, Smithells metals reference book. 2013: Elsevier.
109. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. Hundley, and X. Zhang, Epitaxial nanotwinned Cu films with high strength and high conductivity. Applied Physics Letters, 2008. 93(8): p. 083108.
110. X. Feng, W. Fu, J. Zhang, J. Zhao, J. Li, K. Wu, G. Liu, and J. Sun, Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films. Scripta Materialia, 2017. 139: p. 71-76.
111. C. Schuh, T. Nieh, and H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Materialia, 2003. 51(2): p. 431-443.
112. Z. Ma, Y. Zhou, S. Long, and C. Lu, Residual stress effect on hardness and yield strength of Ni thin film. Surface and Coatings Technology, 2012. 207: p. 305-309.
113. W. Liu, Y. Wu, J. He, and T. Nieh, ZP LuGrain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy Scr. Mater, 2013. 68: p. 526-529.
114. X. Qin, X. Wu, and L. Zhang, The microhardness of nanocrystalline silver. Nanostructured materials, 1995. 5(1): p. 101-110.
115. T.H. Courtney, Mechanical behavior of materials. 2005: Waveland Press.
116. K. Lu, L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. science, 2009. 324(5925): p. 349-352.
117. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010. 464(7290): p. 877-880.
118. T. Hanabusa, K. Kusaka, and O. Sakata, Residual stress and thermal stress observation in thin copper films. Thin solid films, 2004. 459(1-2): p. 245-248.
119. Y.-S. Huang, C.-M. Liu, W.-L. Chiu, and C. Chen, Grain growth in electroplated (111)-oriented nanotwinned Cu. Scripta Materialia, 2014. 89: p. 5-8.
120. Y. Zhao, T.A. Furnish, M.E. Kassner, and A.M. Hodge, Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research, 2012. 27(24): p. 3049-3057.
121. C. Saldana, T. Murthy, M. Shankar, E. Stach, and S. Chandrasekar, Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag. Applied Physics Letters, 2009. 94(2): p. 021910.
122. S. Piccinin, C. Stampfl, and M. Scheffler, First-principles investigation of Ag-Cu alloy surfaces in an oxidizing environment. Physical Review B, 2008. 77(7): p. 075426.
123. E. Orowan, Symposium on internal stresses in metals and alloys. Institute of Metals, London, 1948: p. 451.
124. E. Nes, N. Ryum, and O. Hunderi, On the Zener drag. Acta Metallurgica, 1985. 33(1): p. 11-22.
125. S. Lee, D. Chatain, C.H. Liebscher, and G. Dehm, Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2021. 203: p. 114044.

(此全文20270927後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *