帳號:guest(3.143.241.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王乙亘
作者(外文):Wang, Yi-Hsuan
論文名稱(中文):佔空比對高功率脈衝磁控濺鍍製備之氮化鈦覆蓋氮化釩鍍層機械性質之影響
論文名稱(外文):Effect of Duty Cycle on Mechanical Properties of TiN-capped VN Coatings Deposited by High Power Pulsed Magnetron Sputtering
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):呂福興
林郁洧
口試委員(外文):Lu, Fu-Hsing
Lin, Yu-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:109011501
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:101
中文關鍵詞:氮化釩氮化鈦高功率脈衝磁控濺鍍佔空比耐磨性循環功率誘發疲勞
外文關鍵詞:Vanadium nitrideTitanium nitrideHPPMSDuty cycleWear resistancePower-cycle induced fatigue (PCIF)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:253
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文的研究目的是使用高功率脈衝磁控濺鍍系統(HPPMS)製備不含有釩金屬相之氮化釩鍍層,並且藉由調控佔空比改善鍍層結構與性質。此外,為了防止氮化釩鍍層之氧化,本研究引入氮化鈦覆蓋層,並且探討覆蓋層對氮化釩鍍層機械與磨潤性質之影響。試片製備於矽與AISI D2鋼基材上並鍍製300奈米氮化鈦覆蓋氮化釩鍍層。結果顯示降低佔空比至3%,能夠製備具有光滑表面之緻密鍍層,表示電漿能量的增加比伴隨而來的離子撞擊效應對成膜有更顯著的影響。D2鋼的試片上的氮化釩具有(200)織構,而矽基板試片則呈現較弱之(200)與隨機織構,這可能是因為D2鋼試片之離子穿隧效應比矽基板試片更顯著。磨耗試驗的結果顯示所有鍍層的磨耗率都極低僅有0.1×10-6 mm3N-1m-1,其原因可能是磨耗試驗過程中氮化釩會產生自潤滑之氧化相,而氧化相主導並顯著提高鍍層之耐磨性。留在磨道上的氮化鈦碎屑可能會增加氮化釩鍍層之摩擦係數,但添加氮化鈦覆蓋層對氮化釩鍍層之耐磨性沒有影響,因此氮化鈦覆蓋層可以作為裝飾性之保護鍍層。另外,利用光學曲率法與平均應變法測量之氮化釩鍍層殘餘應力顯示出很大的差距,我們提出了循環功率誘發疲勞(PCIF)之機制來解釋此差距。由於HPPMS製程中的循環功率可能會引起作用於矽基材之交替彎曲負載,導致矽基板試片上產生高週疲勞裂縫成長,因而緩解矽基材彎曲,並降低整體殘餘應力。
The purposes of this study were to produce VN coatings without retained vanadium (V) metal phase using high power pulsed magnetron sputtering (HPPMS), by which structure and properties of the coatings could be improved by controlling duty cycle. Moreover, to prevent the VN coatings from oxidation in the ambient air, a TiN capping layer was introduced on the VN coating and the effect of capping layer on mechanical and tribological properties of the bilayer VN coatings was investigated as well. The specimens were deposited on Si and D2 steel substrates with or without TiN capping layer. Denser VN coatings with smoother surface could be produced with decreasing duty cycle from 9 to 3%, indicating that the increase in energy of the plasma species by the HPPMS process played a more significant effect than the accompanying ion-peening. The VN coatings on D2 steel showed (200) texture and the coatings on Si presented less (200) or nearly random texture, which could be attributed to the more significant ion channeling effect on the specimens on D2 steel than that on Si substrate. All VN coatings prepared by HPPMS with or without TiN capping layer showed extremely low wear rate of 0.1×10-6 mm3N-1m-1. The self-lubricating vanadium oxides formed by tribochemical reaction or exposing to the ambient air could dominate and significantly enhance the wear resistance of VN coatings. Adding a TiN capping layer did not significant affect the wear rate of VN coatings, although the friction coefficient of VN may be increased by the TiN debris left on the wear track. Therefore, the TiN capping layer can serve as a decorative and protective coating. The results showed a large deviation between the residual stresses measured by LCM and AXS methods for the specimens on Si substrate. A power-cycle induced fatigue (PCIF) mechanism was proposed to explain the deviation, where alternating bending load caused by the power cycle of HPPMS process may induce high-cycle fatigue crack growth on the Si substrate, thereby relaxing the curvature of the substrate and decreasing the overall residual stress.
摘要.............................................................i
Abstract........................................................ii
致謝...........................................................iii
Content..........................................................v
List of Figures................................................vii
List of Tables..................................................ix
Chapter 1 Introduction........................................1
Chapter 2 Literature Review...................................3
2.1 Characteristics of VN.....................................3
2.2 Fracture Toughness of VN..................................5
2.3 Self-lubricating Property of VN...........................6
2.4 Tribological Behavior.....................................8
2.4.1 Adhesion Strength.......................................8
2.4.2 Wear Resistance.........................................9
2.5 High Power Pulsed Magnetron Sputtering (HPPMS)...........11
2.6 Effects of Process Parameters............................12
2.6.1 Nitrogen Flow Rate.....................................12
2.6.2 Duty Cycle and Average Power of HPPMS..................13
Chapter 3 Experimental details...............................15
3.1 Substrate Preparation....................................15
3.2 Deposition Procedures....................................15
3.2.1 High Power Pulsed Magnetron Sputtering (HPPMS).........20
3.2.2 Monitoring of HPPMS....................................20
3.3 Characterization Methods for Structure and Compositions..20
3.3.1 Compositions...........................................20
3.3.2 Compositional Depth Profiles...........................22
3.3.3 Compositions within wear tracks........................22
3.3.4 Crystal Structure......................................22
3.3.5 Cross-sectional Microstructure and Surface Morphology..24
3.3.6 Surface Roughness......................................24
3.4 Characterization Methods for Properties..................25
3.4.1 Hardness and Young’s modulus...........................25
3.4.2 Residual Stress........................................25
3.4.3 Electrical Resistivity.................................27
3.4.4 Adhesion Strength......................................28
3.4.5 Wear Resistance........................................30
Chapter 4 Results............................................32
Part I: Peak Power Density and Plasma Compositions..............32
4.1 Peak Power Density.......................................32
4.2 Plasma Compositions......................................34
Part II: Specimens deposited on Si substrates...................36
4.3 Chemical compositions and Structure......................36
4.3.1 Chemical Compositions..................................36
4.3.2 Crystal Structure......................................36
4.3.3 Microstructure.........................................42
4.3.4 Surface Roughness......................................42
4.4 Properties...............................................45
4.4.1 Hardness, Young’s modulus and Electrical Resistivity...45
4.4.2 Residual Stress........................................45
Part III: Specimens deposited on D2 steel substrates............48
4.5 Chemical Compositions and Structure......................48
4.5.1 Chemical Compositions..................................48
4.5.2 Crystal Structure......................................51
4.5.3 Microstructure.........................................54
4.5.4 Surface Roughness......................................55
4.6 Properties...............................................57
4.6.1 Hardness and Young’s modulus...........................57
4.6.2 Residual Stress........................................59
4.6.3 Adhesion Strength......................................61
4.6.4 Wear Resistance........................................63
Chapter 5 Discussion.........................................72
5.1 Effect of Duty Cycle.....................................72
5.1.1 Deposition and Texture Evolution on Si and D2 Steel....72
5.1.2 Properties of VN Coatings..............................75
5.2 Tribological Behavior....................................75
5.2.1 Wear Resistance........................................75
5.2.2 Role of TiN Capping Layer..............................77
5.3 Residual Stress..........................................78
5.3.1 Power-Cycle Induced Fatigue (PCIF).....................78
5.3.2 Effect of TiN Capping Layer on Residual Stress.........82
Chapter 6 Conclusions........................................85
Reference.......................................................86
Appendix A Optical Emission Spectra..........................93
Appendix B XPS Spectra.......................................95
Appendix C 2D AFM Images.....................................98
Appendix D 2D profiles of wear tracks.......................100
[1] A. Magnѐli, Structures of the ReO3-type with recurrent dislocations of atoms: 'homologous series' of molybdenum and tungsten oxides, Acta Crystallogr. 6 (1953) 495-500.
[2] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings, Tribol. Lett. 17 (2004) 751-755.
[3] H.L. Schick, Thermodynamics of certain refractory compounds, Academic Press, New York, 1966.
[4] C.-K. Wu, J.-H. Huang, G.-P. Yu, Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods, Mater. Chem. Phys. 224 (2019) 246-256.
[5] J.-S. Chun, I. Petrov, J.E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys. 86 (1999) 3633-3641.
[6] J.-E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21-44.
[7] R. Hübler, Hardness and corrosion protection enhancement behaviour of surgical implant surfaces treated with ceramic thin films, Surf. Coat. Technol. 116 (1999) 1111-1115.
[8] H. Okamoto, N-V (Nitrogen-Vanadium), J. Phase Equilib. 22 (2001) 362-362.
[9] M.B. Takeyama, T. Itoi, K. Satoh, M. Sakagami, A. Nyoa, Application of thin nanocrystalline VN film as a high-performance diffusion barrier between Cu and SiO2, J. Vac. Sci. Technol. B 22 (2004) 2542-2547.
[10] X.-P. Qu, M. Zhou, T. Chen, Q. Xie, G.-P. Ru, B.-Z. Li, Study of ultrathin vanadium nitride as diffusion barrier for copper interconnect, Microeletron. Eng. 83 (2006) 236-240.
[11] Q. Sun, Z.-W. Fu, Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries, Electrochim. Acta 54 (2008) 403-409.
[12] X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, Reactive magnetron sputter deposition of polycrystalline vanadium nitride films, J. Vac. Sci. Technol. A 14 (1996) 3124-3129.
[13] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, J.E. Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys. 62 (1987) 481-484.
[14] J.-H. Huang, L.-J. Wei, I-S. Ting, Evaluation of fracture toughness of VN hard coatings: Effect of preferred orientation, Mater. Chem. Phys. 275 (2022) 125253.
[15] ICDD Kabekkodu, International Centre for Diffraction Data, 2003. PDF# 65-0437.
[16] H.O. Pierson, Handbook of refractory carbides & nitrides: properties, characteristics, processing and applications, William Andrew, New Jersey, 1996.
[17] Y. Qiu, S. Zhang, B. Li, J.-W. Lee, D. Zhao, Influence of Nitrogen Partial Pressure and Substrate Bias on the Mechanical Properties of VN Coatings, Procedia Eng. 36 (2012) 217-225.
[18] A.B. Mei, R.B. Wilson, D. Li, D.G. Cahill, A. Rockett, J. Birch, L. Hultman, J.E. Greene, I. Petrov, Elastic constants, Poisson ratios, and the elastic anisotropy of VN (001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition, J. Appl. Phys. 115 (2014) 214908.
[19] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239 (2014) 20-27.
[20] H.-W. Hsiao, J.-H. Huang, G.-P. Yu, Effect of oxygen on fracture toughness of Zr(N,O) hard coatings, Surf. Coat. Technol. 304 (2016) 330-339.
[21] G. Sangiovanni, L. Hultman, V. Chirita, Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Mater. 59 (2011) 2121-2134.
[22] W.M. Haynes, D.R. Lide, T.J. Bruno, CRC Handbook of Chemistry and Physics, 95th ed, CRC Press, Boca Raton, 2014.
[23] H. Guo, B. Li, J. Wang, W. Chen, Z. Zhang, W. Wang, J. Jia, Microstructures, mechanical and tribological properties of VN films deposited by PLD technique, RSC Adv. 6 (2016) 33403-33408.
[24] H. Guo, C. Lu, Z. Zhang, B. Liang, J. Jia, Comparison of microstructures and properties of VN and VN/Ag nanocomposite films fabricated by pulsed laser deposition, Appl. Phys. A 124 (2018) 1-8.
[25] Z. Cai, J. Pu, X. Lu, X. Jiang, L. Wang, Q. Xue, Improved tribological property of VN film with the design of pre-oxidized layer, Ceram. Int. 45 (2019) 6051-6057.
[26] E. Liu, J. Zhang, S. Chen, S. Du, H. Du, H. Cai, L. Wang, High temperature negative wear behaviour of VN/Ag composites induced by expansive oxidation reaction, Ceram. Int. 47 (2021) 15901-15909.
[27] N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings, Tribol. Lett. 28 (2007) 1-7.
[28] N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings, Wear 262 (2007) 1152-1158.
[29] H.A. Wriedt, The OV (oxygen-vanadium) system, Bull. Alloy Phase Diagr. 10 (1989) 271-277.
[30] Y. Ningyi, L. Jinhua, L. Chenglu, Valence reduction process from sol–gel V2O5 to VO2 thin films, Appl. Surf. Sci. 191 (2002) 176-180.
[31] M.J. Rivera‐Chaverra, D. Escobar, R. Ospina, M. Arroyave‐Franco, J.J. Olaya, A. Pardo‐Trujillo, E. Restrepo‐Parra, Influence of interfacial density on tribological performance of VN/TiN multilayers, Suf. Interface Anal. 53 (2021) 946-955.
[32] B. Subramanian, R. Ananthakumar, A. Kobayashi, M. Jayachandran, Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications, J. Mater. Sci.: Mater. Med. 23 (2012) 329-338.
[33] B. Deng, Y. Tao, D. Guo, Effects of vanadium ion implantation on microstructure, mechanical and tribological properties of TiN coatings, Appl. Surf. Sci. 258 (2012) 9080-9086.
[34] R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik, V.H. Derflinger, C. Mitterer, High-temperature low-friction properties of vanadium-alloyed AlCrN coatings, Tribol. Lett. 23 (2006) 101-107.
[35] K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings, Surf. Coat. Technol. 200 (2005) 1731-1737.
[36] W. Wang, S. Zheng, J. Pu, Z. Cai, H. Wang, L. Wang, G. He, Microstructure, mechanical and tribological properties of Mo-V-N films by reactive magnetron sputtering, Surf. Coat. Technol. 387 (2020) 125532.
[37] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films 270 (1995) 431-438.
[38] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol. 96 (1997) 272-282.
[39] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, CIRP J. Manuf. Sci. Technol. 18 (2017) 145-151.
[40] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films 117 (1984) 243-249.
[41] L.C. Agudelo-Morimitsu, J. De La Roche, A. Ruden, D. Escobar, E. Restrepo-Parra, Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering, Ceram. Int. 40 (2014) 7037-7042.
[42] D. Valerini, M.A. Signore, L. Tapfer, E. Piscopiello, U. Galietti, A. Rizzo, Adhesion and wear of ZrN films sputtered on tungsten carbide substrates, Thin Solid Films 538 (2013) 42-47.
[43] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1-11.
[44] T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, I.G. Brown, Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, MRS Proc. 383 (1995) 447-452.
[45] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
[46] M. Ohring, Materials science of thin films: deposition and structure, Academic Press, San Diego, 2002.
[47] D. Lundin, K. Sarakinos, An introduction to thin film processing using high-power impulse magnetron sputtering, J. Mater. Res. 27 (2012) 780-792.
[48] A.E. Ross, R. Sanginés, B. Treverrow, M.M.M. Bilek, D.R. McKenzie, Optimizing efficiency of Ti ionized deposition in HIPIMS, Plasma Sources Sci. Technol. 20 (2011) 035021.
[49] J.T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, High power impulse magnetron sputtering discharge, J. Vac. Sci. Technol. A 30 (2012) 030801.
[50] K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surf. Coat. Technol. 204 (2010) 1661-1684.
[51] G. Greczynskia, I. Zhirkov, I. Petrova, J.E. Greene, J. Rosena, Control of the metal/gas ion ratio incident at the substrate plane during high-power impulse magnetron sputtering of transition metals in Ar, Thin Solid Films 642 (2017) 36-40.
[52] M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, On the film density using high power impulse magnetron sputtering, Surf. Coat. Technol. 205 (2010) 591-596.
[53] H. Hajihoseini, J.T. Gudmundsson, Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering, J. Phys. D: Appl. Phys. 50 (2017) 505302.
[54] J. Lin, R. Wei, A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance, Surf. Coat. Technol. 338 (2018) 84-95.
[55] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys. 93 (2003) 9086-9094.
[56] G. Abadias, W.P. Leory, S. Mahieu, D. Depla, Influence of particle and energy flux on stress and texture development in magnetron sputtered TiN films, J. Phys. D: Appl. Phys. 46 (2013) 055301.
[57] J.-H. Huang, C.-H. Lin, G.-P. Yu, Texture evolution of vanadium nitride thin films, Thin Solid Films 688 (2019) 137415.
[58] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117-128.
[59] D.G. Sangiovanni, A.B. Mei, L. Hultman, V. Chirita, I. Petrov, J.E. Greene, Ab initio molecular dynamics simulations of nitrogen/VN (001) surface reactions: vacancy-catalyzed N2 Dissociative chemisorption, N adatom migration, and N2 Desorption, J. Phys. Chem. C 120 (2016) 12503-12516.
[60] C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, W.-Y. Wu, Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coat. Technol. 259 (2014) 232-237.
[61] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5 (1972) 4709-4714.
[62] M.Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target, J. Vac. Sci. Technol. A 22 (2004) 146-150.
[63] B. Kościelska, A. Winiarski, W. Jurga, Structure and superconductivity of VN–SiO2 films obtained by thermal nitridation of sol–gel derived coatings, J. Non-Cryst. Solids 356 (2010) 1998-2000.
[64] A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5, Chem. Mater. 22 (2010) 914-921.
[65] R.T. Haasch, T.Y. Lee, D. Gall, J.E. Greene, I. Petrov, Epitaxial VN (001) grown and analyzed in situ by XPS and UPS. I. analysis of as-deposited layers, Surf. Sci. Spectra 7 (2000) 221-232.
[66] Z. Zhao, Y. Liu, H. Cao, J. Ye, S. Gao, M. Tu, Synthesis of VN nanopowders by thermal nitridation of the precursor and their characterization, J. Alloys Compd. 464 (2008) 75-80.
[67] J.-G. Choi, The surface properties of vanadium compounds by X-ray photoelectron spectroscopy, Appl. Surf. Sci. 148 (1999) 64-72.
[68] M.C. Biesinger, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci. 257 (2010) 887-898.
[69] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 2 (1918) 98-100.
[70] L.V. Azaroff, M.J. Buerger, The powder method in X-ray crystallography, MaGraw-Hill, New York, 1958.
[71] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[72] G.G. Stoney, The Tension of Metallic Films deposited by Electrolysis, Proc. Roy. Soc. Lond. A Mat. 82 (1909) 172-175.
[73] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2 αsin2 ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
[74] C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78.
[75] ICDD Kabekkodu, International Centre for Diffraction Data, 2003. PDF# 65-7236.
[76] ICDD Kabekkodu, International Centre for Diffraction Data, 2003. PDF# 38-1420.
[77] I.L. Singer, Mechanics and chemistry of solids in sliding contact, Langmuir 12 (1996) 4486-4491.
[78] F. Ge, P. Zhu, F. Meng, Q. Xue, F. Huang, Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings, Surf. Coat. Technol. 248 (2014) 81-90.
[79] J.-H. Huang, I-S. Ting, T.-W. Zheng, Evaluation of stress and energy relief efficiency of ZrN/Ti and ZrN/Zr, Surf. Coat. Technol. 434 (2022) 128224.
[80] J. Goodman, Mechanics Applied to Engineering, 9th ed, Longmans Green and Company, London, 1930.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *