|
1. Bartal, M., COPD and tobacco smoke. Monaldi archives for chest disease, 2005. 63(4). 2. Andersen, D.H. and R.G. HODGES, Celiac syndrome: V. genetics of cystic fibrosis of the pancreas with a consideration of etiology. American journal of diseases of children, 1946. 72(1): p. 62-80. 3. Burney, P., D. Jarvis, and R. Perez-Padilla, The global burden of chronic respiratory disease in adults. The International Journal of Tuberculosis and Lung Disease, 2015. 19(1): p. 10-20. 4. Nikaido, H., Multidrug resistance in bacteria. Annual review of biochemistry, 2009. 78: p. 119. 5. Kowalska-Krochmal, B. and R. Dudek-Wicher, The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 2021. 10(2): p. 165. 6. Gupta, P. and A. Asha, The Price we Pay for Overdose of Antibiotics: Is there any Alternative? Infect Dis, 2018. 197(3): p. 435-438. 7. Banerjee, S. and S. McCormack, Acetylcysteine for patients requiring mucous secretion clearance: a review of clinical effectiveness and safety. 2019. 8. Hebestreit, A., U. Kersting, and H. Hebestreit, Hypertonic saline inhibits luminal sodium channels in respiratory epithelium. European journal of applied physiology, 2007. 100(2): p. 177-183. 9. Terlizzi, V., et al., Hypertonic saline in people with cystic fibrosis: review of comparative studies and clinical practice. Italian Journal of Pediatrics, 2021. 47(1): p. 1-7. 10. Wohnhaas, C.T., et al., Cigarette Smoke specifically affects small airway epithelial cell populations and triggers the expansion of inflammatory and squamous differentiation associated basal cells. International journal of molecular sciences, 2021. 22(14): p. 7646. 11. Yaghi, A., et al., Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respiratory medicine, 2012. 106(8): p. 1139-1147. 12. Noone, A.-M., et al., Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992–2013Cancer Incidence and Survival Trends by Subtype, 1992–2013. Cancer Epidemiology, Biomarkers & Prevention, 2017. 26(4): p. 632-641. 13. Vento, S., F. Cainelli, and Z. Temesgen, Lung infections after cancer chemotherapy. The lancet oncology, 2008. 9(10): p. 982-992. 14. Jiang, M., Z. Zhang, and S. Zhao, Epidemiological characteristics and drug resistance analysis of multidrug-resistant Acinetobacter baumannii in a China hospital at a certain time. Polish Journal of Microbiology, 2014. 63(3): p. 275. 15. Rossolini, G. and E. Mantengoli, Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clinical Microbiology and infection, 2005. 11: p. 17-32. 16. Oteo, J., et al., Antibiotic resistance in 3113 blood isolates of Staphylococcus aureus in 40 Spanish hospitals participating in the European Antimicrobial Resistance Surveillance System (2000–2002). Journal of Antimicrobial Chemotherapy, 2004. 53(6): p. 1033-1038. 17. Armin, S., et al., Antimicrobial resistance patterns of Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus isolated from patients with nosocomial infections admitted to tehran hospitals. Archives of Pediatric Infectious Diseases, 2015. 3(4). 18. Bodey, G.P., et al., Fever and infection in leukemic patients. A study of 494 consecutive patients. Cancer, 1978. 41(4): p. 1610-1622. 19. Siegel, J.D., et al., Management of multidrug-resistant organisms in health care settings, 2006. American journal of infection control, 2007. 35(10): p. S165-S193. 20. Stoodley, P., et al., Biofilms as complex differentiated communities. Annual Reviews in Microbiology, 2002. 56(1): p. 187-209. 21. Costerton, W., et al., The application of biofilm science to the study and control of chronic bacterial infections. The Journal of clinical investigation, 2003. 112(10): p. 1466-1477. 22. Joo, H.-S. and M. Otto, Molecular basis of in vivo biofilm formation by bacterial pathogens. Chemistry & biology, 2012. 19(12): p. 1503-1513. 23. Macia, M., E. Rojo-Molinero, and A. Oliver, Antimicrobial susceptibility testing in biofilm-growing bacteria. Clinical Microbiology and Infection, 2014. 20(10): p. 981-990. 24. Lu, L., et al., Developing natural products as potential anti-biofilm agents. Chinese medicine, 2019. 14(1): p. 1-17. 25. Cornforth, D.M. and K.R. Foster, Competition sensing: the social side of bacterial stress responses. Nature Reviews Microbiology, 2013. 11(4): p. 285-293. 26. T Garrison, A. and R. W Huigens III, Eradicating bacterial biofilms with natural products and their inspired analogues that operate through unique mechanisms. Current topics in medicinal chemistry, 2017. 17(17): p. 1954-1964. 27. SHIBUYA, Y., P.J. Wills, and P.J. Cole, Effect of osmolality on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum. Respirology, 2003. 8(2): p. 181-185. 28. Kellett, F., J. Redfern, and R.M. Niven, Evaluation of nebulised hypertonic saline (7%) as an adjunct to physiotherapy in patients with stable bronchiectasis. Respiratory medicine, 2005. 99(1): p. 27-31. 29. Elkins, M.R., et al., A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. New England Journal of Medicine, 2006. 354(3): p. 229-240. 30. Cone, R.A., Barrier properties of mucus. Advanced drug delivery reviews, 2009. 61(2): p. 75-85. 31. Boegh, M. and H.M. Nielsen, Mucus as a barrier to drug delivery–understanding and mimicking the barrier properties. Basic & clinical pharmacology & toxicology, 2015. 116(3): p. 179-186. 32. Reeves, E.P., et al., Hypertonic saline in treatment of pulmonary disease in cystic fibrosis. The Scientific World Journal, 2012. 2012. 33. Ridley, C., et al., Assembly of the respiratory mucin MUC5B: a new model for a gel-forming mucin. Journal of Biological Chemistry, 2014. 289(23): p. 16409-16420. 34. Raynal, B.D., et al., Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. Journal of Biological Chemistry, 2003. 278(31): p. 28703-28710. 35. Matsui, H., et al., Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. The journal of immunology, 2005. 175(2): p. 1090-1099. 36. Francis, I., et al., Recent advances in lung-on-a-chip models. Drug Discovery Today, 2022. 37. Zhang, M., et al., A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicology research, 2018. 7(6): p. 1048-1060. 38. Huh, D., A human breathing lung-on-a-chip. Annals of the American Thoracic Society, 2015. 12(Supplement 1): p. S42-S44. 39. Huh, D., et al., A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Science translational medicine, 2012. 4(159): p. 159ra147-159ra147. 40. Flemming, H.-C. and J. Wingender, The biofilm matrix. Nature reviews microbiology, 2010. 8(9): p. 623-633. 41. Berry, D., C. Xi, and L. Raskin, Effect of growth conditions on inactivation of Escherichia coli with monochloramine. Environmental science & technology, 2009. 43(3): p. 884-889. 42. Otto, K., H. Elwing, and M. Hermansson, Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. Journal of bacteriology, 1999. 181(17): p. 5210-5218. 43. Pavlovsky, L., J.G. Younger, and M.J. Solomon, In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft matter, 2013. 9(1): p. 122-131. 44. Kearns, D.B., A field guide to bacterial swarming motility. Nature Reviews Microbiology, 2010. 8(9): p. 634-644. 45. Vijayakumar, S., et al., Biofilm formation and motility depend on the nature of the Acinetobacter baumannii clinical isolates. Frontiers in public health, 2016. 4: p. 105. 46. Ronish, L.A., et al., The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. Journal of Biological Chemistry, 2019. 294(1): p. 218-230. 47. Guttenplan, S.B. and D.B. Kearns, Regulation of flagellar motility during biofilm formation. FEMS microbiology reviews, 2013. 37(6): p. 849-871. 48. Caiazza, N.C., et al., Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. Journal of bacteriology, 2007. 189(9): p. 3603-3612. 49. Quigg, A., et al., Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chemistry & Engineering, 2013. 1(7): p. 686-702. 50. Bhaskar, P., et al., Production of macroaggregates from dissolved exopolymeric substances (EPS) of bacterial and diatom origin. FEMS Microbiology Ecology, 2005. 53(2): p. 255-264. 51. Tsuneda, S., et al., Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS microbiology letters, 2003. 223(2): p. 287-292. 52. Nguyen, P.-T., et al., Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS microbiology, 2020. 6(4): p. 451. 53. Guo, Y.-S., et al., Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Frontiers in Environmental Science, 2018. 6: p. 93. 54. Zeidler, S., et al., Trehalose, a temperature‐and salt‐induced solute with implications in pathobiology of Acinetobacter baumannii. Environmental microbiology, 2017. 19(12): p. 5088-5099. 55. Harimawan, A., A. Rajasekar, and Y.-P. Ting, Bacteria attachment to surfaces–AFM force spectroscopy and physicochemical analyses. Journal of Colloid and Interface Science, 2011. 364(1): p. 213-218. 56. Davies, D., Understanding biofilm resistance to antibacterial agents. Nature reviews Drug discovery, 2003. 2(2): p. 114-122. 57. Santschi, P.H., et al., Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their ‘stickiness’ and aggregation propensity? Marine Chemistry, 2020. 218: p. 103734. 58. Panchatcharam, B.S., et al. Staphylococcus aureus biofilm exoproteins are cytotoxic to human nasal epithelial barrier in chronic rhinosinusitis. in International Forum of Allergy & Rhinology. 2020. Wiley Online Library. 59. Gil, C., et al., Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infection and immunity, 2014. 82(3): p. 1017-1029. 60. Azghani, A.O., et al., Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microbial pathogenesis, 2002. 33(3): p. 109-114. 61. Kapałczyńska, M., et al., 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Archives of Medical Science, 2018. 14(4): p. 910-919. 62. Vadivelu, R.K., et al., Microfluidic technology for the generation of cell spheroids and their applications. Micromachines, 2017. 8(4): p. 94. 63. Keller, G.M., In vitro differentiation of embryonic stem cells. Current opinion in cell biology, 1995. 7(6): p. 862-869. 64. Sandu, I. and C.T. Fleaca, The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation. Journal of colloid and interface science, 2011. 358(2): p. 621-625. 65. Barr, J.J., et al., Bacteriophage adhering to mucus provide a non–host-derived immunity. Proceedings of the National Academy of Sciences, 2013. 110(26): p. 10771-10776. 66. Croce, M.V., et al., Identification and characterization of different subpopulations in a human lung adenocarcinoma cell line (A549). Pathology and Oncology Research, 1999. 5(3): p. 197-204. 67. Reid, L., Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax, 1960. 15(2): p. 132. 68. Widdicombe, J.H. and J.J. Wine, Airway gland structure and function. Physiological reviews, 2015. 95(4): p. 1241-1319. 69. Riento, K. and A.J. Ridley, Rocks: multifunctional kinases in cell behaviour. Nature reviews Molecular cell biology, 2003. 4(6): p. 446-456. 70. Kasai, Y., et al., ROCK inhibitor combined with Ca2+ controls the myosin II activation and optimizes human nasal epithelial cell sheets. Scientific reports, 2020. 10(1): p. 1-13. 71. Gindele, J.A., et al., Intermittent exposure to whole cigarette smoke alters the differentiation of primary small airway epithelial cells in the air-liquid interface culture. Scientific reports, 2020. 10(1): p. 1-17. 72. Gaddy, J.A., A.P. Tomaras, and L.A. Actis, The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and immunity, 2009. 77(8): p. 3150-3160. 73. Grassart, A., et al., Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell host & microbe, 2019. 26(3): p. 435-444. e4. 74. Decramer, M., et al., Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. The Lancet, 2005. 365(9470): p. 1552-1560. 75. Yuan, S., et al., Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Science translational medicine, 2015. 7(276): p. 276ra27-276ra27. 76. Denneny, E., et al., Mucins and their receptors in chronic lung disease. Clinical & translational immunology, 2020. 9(3): p. e01120. 77. Yuta, A. and J.N. Baraniuk, Therapeutic approaches to mucus hypersecretion. Current allergy and asthma reports, 2005. 5(3): p. 243-251. 78. Aldini, G., et al., N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free radical research, 2018. 52(7): p. 751-762. 79. Tomkiewicz, R., A. Biviji, and M. King, Effects of oscillating air flow on the rheological properties and clearability of mucous gel simulants. Biorheology, 1994. 31(5): p. 511-520. 80. Zafarullah, M., et al., Molecular mechanisms of N-acetylcysteine actions. Cellular and Molecular Life Sciences CMLS, 2003. 60(1): p. 6-20. 81. Dinicola, S., et al., N-acetylcysteine as powerful molecule to destroy bacterial biofilms. A systematic review. Eur Rev Med Pharmacol Sci, 2014. 18(19): p. 2942-2948.
|