|
References [1] M. Agnieszka, G. Michał, "Data augmentation for improving deep learning in image classification problem", IEEE:International interdisciplinary PhD workshop, (2018), pp. 117-122. [2] K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition", IEEE:Conference on computer vision and pattern recognition, (2016), pp. 770-778. [3] S. Ioffe, C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", PMLR:International conference on machine learning, volume 37, (2015), pp. 448-456. [4] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, "Generative adversarial networks - An overview", IEEE:IEEE signal processing magazine, volume 35, (2018), pp. 53-65. [5] X. Yi, E. Walia, P. Babyn, "Generative adversarial network in medical imaging: A review", arXiv: Medical image analysis, volume 58, (2019) pp. 3-9. [6] D.I. Morís, J.J. de Moura Ramos, J.N. Buján, M.O. Hortas, "Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images", Elsevier: Expert Systems with Applications, volume 185, (2021), pp. 2-6. [7] W. Jin, S. Dong, C. Dong, X. Ye, "Hybrid ensemble model for differential diagnosis between COVID-19 and common viral pneumonia by chest X-ray radiograph", Elsevier: Computers in Biology and Medicine, volume 131, (2021), pp. 2-8. [8] S. Dunford, S. Canumalla, P. Viswanadharn, "Intermetallic morphology and damage evolution under thermomechanical fatigue of lead (Pb)-free solder interconnections", IEEE: Electronic Componets and Technology Conference, (2004), pp. 1-11. [9] W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, "Face recognition: A literature survey", ACM: Computing surveys, volume 35, (2003), pp. 399-458. [10] G. Wolberg, "Geometric transformation techniques for digital images: a survey", Columbia University: Computer Science, (1988), pp. 13-17. [11] M. Elgendi, M.U. Nasir, Q. Tang, D. Smith, J.-P. Grenier, C. Batte, B. Spieler, W.D. Leslie, C. Menon, R.R. Fletcher, N. Howard, R. Ward, W. Parker, S. Nicolaou, "The Effectiveness of Image Augmentation in Deep Learning Networks for Detecting COVID-19: A Geometric Transformation Perspective", Frontiers: in Medicine, volume 8, (2021), pp. 1-12. [12] R. Heriansyah, S.A.R.S.A. Bakar, M. Mun'im Ahmad Zabidi, "Segmentation of PCB Image Into Simple Generic Patterns Using Mathematical Morphology and Windowing Technique", Proceedings of National Conference: Computer Graphic & Multimedia, (2002), pp. 1-7. [13] J. Naam, J. Harlan, S. Madenda, E.P. Wibowo, "Identification of the proximal caries of dental x-ray image with multiple morphology gradient method", ACADEMIA: International Journal on Advanced Science, Engineering and Information Technology, volume 6, (2016), pp. 343-346. [14] K. O'Shea, R. Nash, "An introduction to convolutional neural networks", arXiv:1511.08458_Computer Science > Neural and Evolutionary Computing, (2015), pp. 1-11. [15] D. Dai, "An Introduction of CNN : Models and Training on Neural Network Models", IEEE:International Conference on Big Data, Artificial Intelligence and Risk Management (ICBAR), (2021), pp. 1-4. [16] S. Albawi, T.A. Mohammed, S. Al-Zawi, "Understanding of a convolutional neural network", IEEE: International conference on engineering and technology (ICET), (2017), pp. 1-6. [17] A. Budhiman, S. Suyanto, A. Arifianto, "Melanoma Cancer Classification Using ResNet with Data Augmentation", IEEE: International Seminar on Research of Information Technology and Intelligent Systems, (2019), pp. 1-4. [18] G. Bradski, "The openCV library: https://docs.opencv.org/3.4/d6/d00/tutorial_py_root.html", Dr. Dobb's Journal: Software Tools for the Professional Programmer, volume 25, (2000), pp. 120-123. [19] C. Shorten, T.M. Khoshgoftaar, "A survey on image data augmentation for deep learning", Springer: Journal of big data, volume 6, (2019) pp. 12-22. [20] R.C. Gonzalez, R. Woods, "Digital image processing 4th Edition", Pearson Education, (2018), pp. 635-652. [21] G.C. Paul, C.R. Thomas, "Characterisation of mycelial morphology using image analysis", Springer: Advances in Biochemical Engineering, (1998), pp. 1-59. [22] P. Bhattacharya, W. Zhu, K. Qian, "Shape recognition method using morphological hit-or-miss transform", SPIE Journal: Optical Engineering, volume 34, (1995), pp. 1-8. [23] S. Gollapudi, "Learn computer vision using OpenCV: With Deep Learning CNNs and RNNs", Springer: Electronic, (2019), pp. 51-82. [24] A.F. Villán, "Mastering OpenCV 4 with Python: a practical guide covering topics from image processing, augmented reality to deep learning with OpenCV 4 and Python 3.7", Packt Publishing Ltd, (2019), pp. 280-305. [25] D. Krstinić, M. Braović, L. Šerić, D. Božić-Štulić, "Multi-label classifier performance evaluation with confusion matrix", University of Split: Computer Science & Information Technology, (2020), pp. 1-14. [26] AIdea Collaboration Platform, "AOI Defect Classification", Open Source: "https://aidea-web.tw/topic/252eb73e-78d0-4024-8937-40ed20187fd8", (2021).
|