|
(1) Wu, J. The Development and Application of Semiconductor Materials. In 2020 7th International Forum on Electrical Engineering and Automation (IFEEA); IEEE, 2020; pp 153–156. https://doi.org/10.1109/IFEEA51475.2020.00039. (2) Chang, W.-H.; Huang, Y.-C.; Lin, R.-J. 單晶碳化矽在微電子及微感測元件之 應用 Applications of Single Crystal SiC in Microelectronic Devices and Microsensors. 科儀新知 2003, 第二十四卷 (第四期), 4–14. (3) Yazdi, G.; Iakimov, T.; Yakimova, R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals (Basel) 2016, 6 (5), 53. https://doi.org/10.3390/cryst6050053. (4) Philip J. Guichelaar. ACHESON PROCESS. In Carbide, nitride, and boride materials synthesis and processing; Weimer, A. W., Ed.; Chapman & Hall, 1997; pp 115–129. (5) Katoh, Y.; Snead, L. L. Silicon Carbide and Its Composites for Nuclear Applications – Historical Overview. Journal of Nuclear Materials 2019, 526, 151849. https://doi.org/10.1016/j.jnucmat.2019.151849. (6) Brezeanu, G. Silicon Carbide (SiC): A Short History. An Analytical Aproach for SiC Power Device Design. In Proceedings of the International Semiconductor Conference, CAS; Institute of Electrical and Electronics Engineers Inc., 2005; Vol. 2, pp 345–348. https://doi.org/10.1109/SMICND.2005.1558796. (7) Borysiuk, J.; Sołtys, J.; Boek, R.; Piechota, J.; Krukowski, S.; Strupiński, W.; Baranowski, J. M.; Stȩpniewski, R. Role of Structure of C-Terminated 4H-SiC(0001̄) Surface in Growth of Graphene Layers: Transmission Electron Microscopy and Density Functional Theory Studies. Phys Rev B Condens Matter Mater Phys 2012, 85 (4). https://doi.org/10.1103/PhysRevB.85.045426. (8) Abderrazak, H.; Hadj Hmi, E. S. B. Silicon Carbide: Synthesis and Properties. In Properties and Applications of Silicon Carbide; InTech, 2011. https://doi.org/10.5772/15736. (9) Tairov, Y. M.; Tsvetkov, V. F. INVESTIGATION OF GROWTH PROCESSES OF INGOTS OF SILICON CARBIDE SINGLE CRYSTALS. J Cryst Growth 1978, 43, 209–212. (10) Kuroda, N.; Shibahara, K.; YOO, W.; Nishino, S.; Matsunami, H. Step-Controlled VPE Growth 0f SiC Single Crystals at Low Temperatures. 1987, 227–230. (11) Matsunami, H.; Kimoto, T. Step-Controlled Epitaxial Growth of SiC: High Quality Homoepitaxy. Materials Science and Engineering: R: Reports 1997, 20 (3), 125–166. https://doi.org/10.1016/S0927-796X(97)00005-3. (12) Stephan Mueller, A. P. V. F. T. SEED AND SEEDHOLDER COMBINATIONS FOR HIGH QUALITY GROWTH OF LARGE SILICON CARBIDE SINGLE CRYSTALS; 2007. (13) Fraga, M. A.; Bosi, M.; Negri, M. Silicon Carbide in Microsystem Technology — Thin Film Versus Bulk Material. In Advanced Silicon Carbide Devices and Processing; InTech, 2015. https://doi.org/10.5772/60970. (14) Elasser, A.; Chow, T. P. Silicon Carbide Benefits and Advantages for Power Electronics Circuits and Systems. Proceedings of the IEEE 2002, 90 (6), 969–986. https://doi.org/10.1109/JPROC.2002.1021562. (15) Sergey Lazarev aus Petropavlovsk, von. X-RAY INVESTIGATION OF DEFECTS IN III-NITRIDES AND THEIR ALLOYS; 2013. (16) Choudhary, R. K.; Mishra, P.; Biswas, A.; Bidaye, A. C. Structural and Optical Properties of Aluminum Nitride Thin Films Deposited by Pulsed DC Magnetron Sputtering. ISRN Materials Science 2013, 2013, 1–5. https://doi.org/10.1155/2013/759462. (17) Chaurasia, H.; Tripathi, S. K.; Bilgaiyan, K.; Pandey, A.; Mukhopadhyay, K.; Agarwal, K.; Prasad, N. E. Preparation and Properties of AlN (Aluminum Nitride) Powder/Thin Films by Single Source Precursor. New Journal of Chemistry 2019, 43 (4), 1900–1909. https://doi.org/10.1039/C8NJ04594A. (18) L.A. Cunha, C.; C. Pimenta, T.; A. Fraga, M. Development and Applications of Aluminum Nitride Thin Film Technology. In Thin Film Deposition - Fundamentals, Processes, and Applications [Working Title]; IntechOpen, 2022. https://doi.org/10.5772/intechopen.106288. (19) Ballestín-Fuertes, J.; Muñoz-Cruzado-Alba, J.; Sanz-Osorio, J. F.; Laporta-Puyal, E. Role of Wide Bandgap Materials in Power Electronics for Smart Grids Applications. Electronics (Basel) 2021, 10 (6), 677. https://doi.org/10.3390/electronics10060677. (20) Liu, A.-C.; Tu, P.-T.; Langpoklakpam, C.; Huang, Y.-W.; Chang, Y.-T.; Tzou, A.-J.; Hsu, L.-H.; Lin, C.-H.; Kuo, H.-C.; Chang, E. Y. The Evolution of Manufacturing Technology for GaN Electronic Devices. Micromachines (Basel) 2021, 12 (7), 737. https://doi.org/10.3390/mi12070737. (21) Ebling, D. G.; Rattunde, M.; Steinke, L.; Benz, K. W.; Winnacker, A. MBE of AlN on SiC and Influence of Structural Substrate Defects on Epitaxial Growth. J Cryst Growth 1999, 201–202, 411–414. https://doi.org/10.1016/S0022-0248(98)01364-5. (22) Yu, R.; Liu, G.; Wang, G.; Chen, C.; Xu, M.; Zhou, H.; Wang, T.; Yu, J.; Zhao, G.; Zhang, L. Ultrawide-Bandgap Semiconductor AlN Crystals: Growth and Applications. J Mater Chem C Mater 2021, 9 (6), 1852–1873. https://doi.org/10.1039/D0TC04182C. (23) Deng, H.; Endo, K.; Yamamura, K. Competition between Surface Modification and Abrasive Polishing: A Method of Controlling the Surface Atomic Structure of 4H-SiC (0001). Sci Rep 2015, 5 (1), 8947. https://doi.org/10.1038/srep08947. (24) Shi, X.; Pan, G.; Zhou, Y.; Zou, C.; Gong, H. Extended Study of the Atomic Step-Terrace Structure on Hexagonal SiC (0001) by Chemical-Mechanical Planarization. Appl Surf Sci 2013, 284, 195–206. https://doi.org/10.1016/j.apsusc.2013.07.080. (25) Ramachandran, V.; Brady, M. F.; Smith, A. R.; Feenstra, R. M.; Greve, D. W. Preparation of Atomically Flat Surfaces on Silicon Carbide Using Hydrogen Etching. J Electron Mater 1998, 27 (4), 308–312. https://doi.org/10.1007/s11664-998-0406-7. (26) Kimoto, T.; Itoh, A.; Matsunami, H. Step Bunching in Chemical Vapor Deposition of 6H– and 4H–SiC on Vicinal SiC(0001) Faces. Appl Phys Lett 1995, 66 (26), 3645–3647. https://doi.org/10.1063/1.114127. (27) Kawasuso, A.; Kojima, K.; Yoshikawa, M.; Itoh, H.; Narumi, K. Effect of Hydrogen Etching on 6H SiC Surface Morphology Studied by Reflection High-Energy Positron Diffraction and Atomic Force Microscopy. Appl Phys Lett 2000, 76 (9), 1119–1121. https://doi.org/10.1063/1.125957. (28) Kumagawa, M.; Kuwabara, H.; Yamada, S. Hydrogen Etching of Silicon Carbide. Jpn J Appl Phys 1969, 8 (4), 421. https://doi.org/10.1143/JJAP.8.421. (29) Bao, J.; Yasui, O.; Norimatsu, W.; Matsuda, K.; Kusunoki, M. Sequential Control of Step-Bunching during Graphene Growth on SiC (0001). Appl Phys Lett 2016, 109 (8), 081602. https://doi.org/10.1063/1.4961630. (30) Chang, C. W.; Wadekar, P. V.; Guo, S. S.; Cheng, Y. J.; Chou, M.; Huang, H. C.; Hsieh, W. C.; Lai, W. C.; Chen, Q. Y.; Tu, L. W. Controlling Surface Morphology and Circumventing Secondary Phase Formation in Non-Polar m-GaN by Tuning Nitrogen Activity. J Electron Mater 2018, 47 (1), 359–367. https://doi.org/10.1007/s11664-017-5773-5. (31) Wu, W.; Schaeublin, R. TEM Diffraction Contrast Images Simulation of Dislocations. J Microsc 2019, 275 (1), 11–23. https://doi.org/10.1111/jmi.12797. (32) Yu, R.; Liu, G.; Wang, G.; Chen, C.; Xu, M.; Zhou, H.; Wang, T.; Yu, J.; Zhao, G.; Zhang, L. Ultrawide-Bandgap Semiconductor AlN Crystals: Growth and Applications. J Mater Chem C Mater 2021, 9 (6), 1852–1873. https://doi.org/10.1039/D0TC04182C. (33) Tanaka, S.; Kern, R. S.; Davis, R. F. Initial Stage of Aluminum Nitride Film Growth on 6H‐silicon Carbide by Plasma‐assisted, Gas‐source Molecular Beam Epitaxy. Appl Phys Lett 1995, 66 (1), 37–39. https://doi.org/10.1063/1.114173. (34) Ferro, G.; Okumura, H.; Yoshida, S. Growth Mode of AlN Epitaxial Layers on 6H-SiC by Plasma Assisted Molecular Beam Epitaxy. J Cryst Growth 2000, 209 (2–3), 415–418. https://doi.org/10.1016/S0022-0248(99)00582-5. (35) Harada, M.; Ishikawa, Y.; Saito, T.; Shibata, N. Substrate-Polarity Dependence of AlN Single-Crystal Films Grown on 6H–SiC(0001) and (000-1) by Molecular Beam Epitaxy. Jpn J Appl Phys 2003, 42 (Part 1, No. 5A), 2829–2833. https://doi.org/10.1143/JJAP.42.2829. (36) Le, D. D.; Kim, D. Y.; Hong, S.-K. Effect of First-Stage Growth Manipulation and Polarity of SiC Substrates on AlN Epilayers Grown Using Plasma-Assisted Molecular Beam Epitaxy. Korean Journal of Materials Research 2014, 24 (5), 266–270. https://doi.org/10.3740/MRSK.2014.24.5.266. (37) Onojima, N.; Suda, J.; Matsunami, H. Lattice Relaxation Process of AlN Growth on Atomically Flat 6H-SiC Substrate in Molecular Beam Epitaxy. J Cryst Growth 2002, 237–239, 1012–1016. https://doi.org/10.1016/S0022-0248(01)02118-2. (38) Fan, Z. Y.; Rong, G.; Newman, N.; Smith, D. J. Defect Annihilation in AlN Thin Films by Ultrahigh Temperature Processing. Appl Phys Lett 2000, 76 (14), 1839–1841. https://doi.org/10.1063/1.126185. (39) 倪澤恩、李清庭. 分子束磊晶成長系統簡介. 真空科技 1994, 七卷三、四期, 38–42. (40) 黃榮俊. 分子束磊晶技術之發展與磁性薄膜之製備應用. 科儀新知 2002, 第二十三卷第六期, 74–79. (41) Pang, W.-Y.; Lo, I.; Hsieh, C.-H.; Hsu, Y.-C.; Chou, M.-C. Plasma-Assisted Molecular Beam Epitaxy for GaN Growth. Instruments Today 2010, 31, 65–72. (42) N. Hattori, A.; Hattori, K. Creation and Evaluation of Atomically Ordered Side- and Facet-Surface Structures of Three-Dimensional Silicon Nano-Architectures. In 21st Century Surface Science - a Handbook; IntechOpen, 2020. https://doi.org/10.5772/intechopen.92860. (43) 魏賢華. RHEED的構造與原理. In 反射高能電子衍射在薄膜生長中的表面分析; 科學出版社, 2012. (44) Banerjee, D. X-Ray Diffraction (XRD). (45) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization; Springer International Publishing: Cham, 2018; pp 113–145. https://doi.org/10.1007/978-3-319-92955-2_4. (46) Franken, L. E.; Grünewald, K.; Boekema, E. J.; Stuart, M. C. A. A Technical Introduction to Transmission Electron Microscopy for Soft-Matter: Imaging, Possibilities, Choices, and Technical Developments. Small 2020, 16 (14), e1906198. https://doi.org/10.1002/smll.201906198. (47) Bow, J.-S. 淺談TEM分析上常見的主要困惑A Short Summary of Some Typical Puzzles in TEM Analyses. 科儀新知 2022, 232, 71–86. (48) Amelinckx, S.; Van Landuyt, J. Transmission Electron Microscopy. In Electron Microscopy: Principles and Fundamentals; John Wiley & Sons, 2001.
|