帳號:guest(18.188.212.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃鈺鈴
作者(外文):Huang,Yu-Ling
論文名稱(中文):教師運用不同提問類型促進一年級學生數學思考之研究
論文名稱(外文):Research on Teacher's Use of Different Types of Questioning to Promote First Grade Student’s Mathematical Thinking
指導教授(中文):林勇吉
陳正忠
指導教授(外文):Lin, Yung-Chi
Chen, Jeng-Chung
口試委員(中文):蔡文煥
秦爾聰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所碩士在職專班
學號:108199519
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:110
中文關鍵詞:提問類型數學思考
外文關鍵詞:question typemathematical thinking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:278
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討數學教學當中,教師欲促進一年級學生解釋自己想法的完整性,故運用不同提問類型來提問,促進學生數學思考之表現。本研究為教學研究,研究教師所帶的一年級班上學生,在18以內的加法、18以內的減法、時間三個單元共18節課教學內容下,為了促進學生解釋的完整性,教師運用不同類型的提問,引導學生思考從初始回答的不正確,促使學生回答正確。觀察的工具包含教學觀察錄影、錄音等方式進行資料蒐集,將錄影檔及錄音檔轉成逐字稿,分析在課堂中教師的每一句提問以及學生的回答,統計教師在每節課使用提問類型的次數並用百分比呈現,學生的思考表現以對話舉例說明,此外在課前及課後與諍友進行討論,教師也在課後進行教學反思。
本研究結果分成三個面向,教師在各單元使用之提問類型、教師在各單元使用之提問類型及目的、學生數學思考之表現,教師提問類型的分析主要以Franke等人(2009)提出的提問類型和Fraivilig,Murphy與Fuson(1999)促進學生思考之策略的ACT架構,進行修改成六種提問類型,分別為一般性提問、具體性特定性提問、一系列探索式具體特定性提問、引導性提問、支撐性提問及擴張性提問,將這六種提問類型分為十二種提問目的進行分析;教師在教學的三個單元,主要是以引導性提問為主,其次是支撐性提問、一系列探索式具體特定性提問、具體性提問,最少的提問類型是擴張性提問,並不是所有的數學概念都適用擴張性提問;學生在三個單元的數學思考表現最多的是正確完整,在這三個單元中,一年級學生有時會無法具體說明清楚自己的意思,則需要透過教師的提問,幫助其說明完整自己的意思。在18以內的加法和18以內減法的單元,學生使用的策略為分解數字和向上數或向下數,分解數字時,學生會不確定要如何分解成什麼數字;使用向上數或向下數策略時,學生無法判斷題意是要向上還是向下數,其次會不清楚從哪一個數字開始數,就需要教師的提問幫助學生釐清概念,最後引導學生至正確的數學概念;在時間的單元,因是比較抽象的概念,則需要透過教師的提問,幫助學生區分日期和星期的概念。
This research aims to explore that in mathematics teaching, teachers want to promote the integrity of first grade students' interpretation of their ideas.Therefore,teacher use different questioning types to ask questions to promote student's performance in mathematics thinking. This research is a instruction research, In the three units of addition within 18, subtraction within 18, and time for a total of 18 lessons, in order to promote the completeness of students’ explanations, teachers use different types of questions to guide students to think about incorrect initial answers and encourage students correct answer. Observation tools include teaching observation video recording, audio recording, etc. to collect data, convert the video files and audio files into verbatim drafts, analyze every sentence of the teacher’s questions in the classroom and students’ answers, and count the types of questions the teacher uses in each lesson The number of times is also presented as a percentage. Students’ thinking performance is illustrated by dialogues. In addition, they discuss with friends before and after class, and teachers also reflect on teaching after class.
The results of this research are divided into three aspects, the types of questions used by teachers in each unit, the types and purposes of questions used by teachers in each unit, and the performance of students' mathematical thinking The analysis of teacher question types is mainly based on the question types,which propsed by Franke, Webb, Chan, Ing, Freud and Battey (2009).Also, use Fravilig, Murphy and Fuson (1999) the ACT framework of strategies promoting students’ thinking to revise into six types of question.These six types are general questions, specific questions, a series of inquiry questions, guided questions, and supporting questioning and expansion questioning. The six question types are divided into twelve questioning purposes for analysis, The three units of the teacher's teaching are mainly guided questions, followed by supporting questions, a series of exploratory specific specific questions, and specific questions. There is a clear gap between specific answers and other question types. The followings are supporting questions, a series of inquiry questions, and specific questions. The least question type is expansion questions. Not all mathematical concepts are applicable to expansion questions; Students’ mathematical thinking performance in the three units is most correct and complete. In these three units, first grade students sometimes cannot specify their meaning clearly, so they need to use teacher’s questions to help them explain their completeness meaning. In the unit of addition within 18 and subtraction within 18, students use the strategy of decomposing numbers and counting up or down. When decomposing numbers, students will not be sure how to decompose into which numbers.When using up or down counting strategies , students can’t judge whether the question means to count upwards or downwards. Secondly, they don’t know which number to start counting from. They need questions from the teacher to help students clarify the concept, and finally guide the students to the correct mathematical concept. In the unit of time, because it is a relatively abstract concept, teachers’ questions are needed to help students distinguish between the concept of date and week.
第一章 緒論--------------------------------------1
第一節 研究背景與研究動機---------------------------1
第二節 研究目的與問題-------------------------------3
第三節 名詞釋義-------------------------------------3
第四節 研究範圍與限制-------------------------------4
第二章 文獻探討-----------------------------------7
第一節 提問教學-----------------------------------7
第二節 數學提問類型之探討-------------------------10
第三節 數學思考之探討-----------------------------17
第四節 提問與數學思考之關聯------------------------23
第五節 相關研究-----------------------------------23
第三章 研究設計-----------------------------------27
第一節 研究場域、研究對象與研究參與者---------------27
第二節 研究架構與研究流程--------------------------30
第三節 教學設計-----------------------------------34
第四節 資料蒐集、整理與分析------------------------37
第五節 研究倫理-----------------------------------47
第六節 研究信效度---------------------------------48
第四章 研究結果與分析------------------------------49
第一節 教師在各單元提問類型之使用-------------------49
第二節 教師在各單元使用提問類型與目的---------------54
第三節 學生數學思考之表現--------------------------66
第五章 結論與建議---------------------------------81
第一節 結論---------------------------------------81
第二節 建議---------------------------------------83
參考文獻 -----------------------------------------85
一、中文文獻
王義傑(2004)。一個國小三年級數學教室社會數學常規發展歷程之個案研究(未出版之碩士論文)。國立新竹師範學院,新竹市。
吳明隆(2001)。教育行動研究導論:理論與實務。臺北市:五南。
吳長恩(2008)。數學臆測教學下教師提問類型之個案研究(碩士論文)。國立清華大學,新竹市。
何婷真(2016)。臺灣中學英語教師提問類型使用之比較研究(碩士論文)。國立彰化師範大學,彰化市。
翁嘉聲(2001)。國小數學教學形成群體討論文化之個案研究(碩士論文)。國立臺北師範大學,臺北市。
張玉成(1988)。教師發問技巧。臺北:心理。
張春興(1994)。教育心理學-三化取向的理論與實踐。臺北:東華。
張翠華(2000)。教師在引入文化概念教學活動下教學中社會常規改變之研究(碩士論文)。國
立新竹師範學院,新竹市。
張玉成(2003)。教學創新與思考啟發.創新教學理論與實務(31-48)。臺北市:師大書苑。
陳淑娟(1999)。透過合作行動研究探討一個國小班級的數學討論活動(碩士論文)。國立嘉義師範大學,嘉義市。
陳埩淑(2002)。教室言談在教育上的涵意與應用。課程與教學季刊,(5)4,125-140。
陳淑娟、劉祥通(2002)。國小班級數學討論活動可行方案之探討。科學教育學刊,10(1),87-107。
陳霈頡、楊德清(2005)數學表徵應用在教學上的探究.。科學教育研究與發展季刊,40,48-61。
陳淑娟(2008)。國小教師發展數學提問能力之合作行動研究(碩士論文)。國立臺南大學,臺南市。
陳淑娟、劉祥通(2010)。數學提問教學之探討與應用。科學教育月刊,333,2-18。
許瀞芳(2004)。教師如何引導學生產生對話與互動的能力。研習資訊,21(4),95-103。
教育部(2014)。十二年國民基本教育課程綱要總綱。教育部。取自
http://www.naer.edu.tw/files/15-1000-7944,c639-1.php?Lang=zh-tw
游麗卿(2002)。從分析學生爭論解題紀錄的合理性探討社會數學規範的內涵。第六屆課程
與教學論壇學術研討會論文集,1-1~1-21。
黃缃筠(2013)。數學推理規範對國小六年級學生比例問題解題表現之影響(碩士論文)。國立
新竹教育大學,新竹市。
劉如芳(2002)。一個國小數學教室之社會數學常規發展歷程研究(未出版之碩士論文)。國立
新竹師範學院,新竹市。
蔡丞智(2014)。教師在課室討論文化下促進學生數學思考的教學策略之探討(碩士論文)。國立新竹教育大學,新竹市。
蔡敏玲(2002)。教育質性研究歷程的展現:尋找教室團體互動的節奏與變奏。台北:心理。
鍾靜(2005)。論數學課程近十年之變革。教育研究月刊,133,124-134。
蘇泱因(2010)。探討國小教師發展數學推理規範以促進學生的推理歷程(碩士論文)。國立新竹教育大學,新竹市。

二、英文文獻
Artzt,A.F.(2002). Becoming a reflective mathematics teacher.Lawrence Erlbaum Associates,London.
Bauersfeld,H.(1994)Theoretical Perspectives on Interaction in the Mathematics Classroom, in Biehler et al.(Eds.)The Didactics of Mathematics as a Scientific Discipline(pp.33-146).Dordrecht:Kluwer.
Baker, Schirner & Hoffman,(2006).Multiage Mathematics : Scaffolding Young Children’s Mathematical Learning, Teaching Children Mathematics,19-21.
Berk, L. E., & Winsler, A. (1999)。鷹架兒童的學習:維高斯基與幼兒教育谷瑞勉(譯)。臺北:心理。(原著出版於1995)
Cobb, P., Wood, T., & Yakel. (1991). A Constructivist Approach to Second Grade Mathematics. In: E. von Glasersfeld (Ed.) Radical Constructivism in Mathematics Education(pp.157-176).Dordrecht. The Netherlands: Kluwer.
Chang S. L., & Lin, F. L. (2006). Investigations into an elementary school teacher's strategies of advancing children’s mathematical thinking. Taiwan Journal of Mathematics Teachers. 5,21-34.
Dantonio, M., & Beisenherz, P. C.(2001) Learning to question, questioning to learn: developing effective teacher questioning practices. Boston: Allyn and Bacon.
Fraivillig, J. L., Murphy, L.A.&Fuson, K.C.(1999). Advancing children’s mathematical thinking in everyday mathematics classrooms. Journal for Research in Mathematics Education, 30(2) ,148-170.
Franke,M.L.,Webb,n.m.,Chan,A.G.,Ing,M.,Freud,D.,&Battey,D.(2009).Teacher questioning to elicit students mathematical thinking in elementary school classroom .Journal of Teacher Education,60(4),380-392.
Greenes & Mode(2001).Empowering Teachers To Discover, Challenge, To Discover, Challenge and Support Students with Mathematical Promise. In Marylou D. (Eds. ), Learning to Question, Questioning to Learn –Developing Effective Teacher Questioning Practice s. Needham: Heights,121-125.
Herbel – Eisenmann, B. A., & Breyfogle, M. L.(2005). Questioning Our Patterns of Questioning.Mathematics teaching in the middle school, 10(9),484-489.
Jacobs, V. R., & Ambrose, R. C. (2008). Making the most of story problems. Teaching children mathematics, 15(5),260-266.
Mason, J. Burton, L& Stacey,K.(1985)Thinking Mathematically.Amsterdam:Addison-Wesley.
Mason, J.(2000). Asking mathematical questions mathematically.International Journal of Mathematical Educational in Science and Technology,31(1),97-111.
MoNses,B,Bjork,E&Goldenberg,P.E.(1990). Beyond Problem Solving:Problem Posing.In Cooney,J.T&Hirsch,R.C(Eds.),Teaching and Learning Mathematics in the 1990s(pp.82-
91),Reston,Va:NTCM.
McClain, K., & Cobb, P. (2001). An Analysis of Development of Social Mathematical Norms in One First-Grade Classroom. Journal for Research in Mathematics Education, 32(3). 236-266.
Manouchechri &Lapp(2003).Unveiling Student understanding:The role of Question in instruction.Mathematics Teacher,96(8),562-566.
Mettetal, G.(2012). The what, why and how of classroom action research. Journalof the Scholarship of Teaching and Learning, 2(1), 6-13. Retrieved from https://scholarworks.iu.edu/journals/index.php/josotl/article/view/1589
NCTM(1991)Professional standards for teaching mathematics.Reston. VA:NCTM
NCTM(2000)Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematic.
Wood, D., Bruner, J. S., &; Ross, G. (1976). The role of tutoring in problem solving. The Journal of Child Psychology and Psychiatry, 17, 89-100.
Wood, T. (1998). Alternative patterns of communication in mathematics classes: Funneling or focusing ?. In Heinz S., Maria G.(Eds.), Language and Communication in the Mathematics Classroom (pp.167-178). Reston, Va: NCTM.
Resnick,L.B.(1995). Inventing arithmetic:Making Children’s intuition work in school.In C.A. Nelson(Eds.),Basic and applied perpectives on learning, cognition, and development(pp.75-101).Mahwsh, NJ:Lawrence Erlbaum Associates.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *