帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郝 蕾
作者(外文):HAO, LEI
論文名稱(中文):兩岸國中教科書幾何證明機會的比較研究
論文名稱(外文):A Comparative Study of geometric Proof Oppotunities in Cross-strait Textbooks
指導教授(中文):林碧珍
指導教授(外文):Lin, Pi-Jen
口試委員(中文):蔡文煥
陳正忠
口試委員(外文):Tasi, Wen-Huan
Chen, Jeng-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:108198466
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:141
中文關鍵詞:幾何證明教科書分析內容分析法
外文關鍵詞:Geometric proofTextbooks AnalysisContent Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘 要
本文進行的是的是兩岸國中數學教科書幾何證明機會的比較分析,研究對象是台灣康軒版和大陸人教版國中數學教科書中的幾何部分;研究架構是根據Otten, Males, 與Gilbertson(2014)的幾何證明教科書分析架構改編而成;分析教科書幾何部分中發展活動中提供給學生性質定理講解的講解題和性質定理應用的應用題,以及練習活動中學生獨立完成的練習題;研究單位以發展活動的性質定理為單位,應用題和練習題的小題為單位。以題幹表徵、題目問句和證實過程三種類型做同一活動版本間和版本內不同活動的對比分析。
在經過兩岸教科書的對比研究後發現:
(1)題幹表徵部分兩個版本都多數以圖形題的形式提供學生幾何證明的機會;
(2)題目問句部分兩個版本在都是以只與主張相關的問題提供學生幾何證明的機會,在此類型中,講解題多數是要求提出命題或判斷其真偽,應用題和練習題多數是要求幾何數學計算,在只與證明相關和與主張+證明相關的表現也不盡相同,康軒版缺少反例的類型。
(3)證實過程類型兩個版本講解題都是演繹性證明比重最高,且在練習題中最低,應用題和練習題是隱含的證明需求比重最高;兩個版本在應用題和練習題大多都缺少操作性證明的類型。


關鍵詞:幾何證明、教科書分析、內容分析法
Abstract
The study is a comparative analysis of the middle school mathematics textbooks providing students geometric proof opportunities. The research object is the geometry part in the middle school mathematics textbooks of is Kang Xuan edition and Ren Jiao edition. The research framework is adapted from the analytic framework made by Otten et al. (2014). This paper analyzes the exposition which explains properties or theorems and the examples which to apply of them in the development , and the exercises completed independently by students in the exercise activity. The research unit takes the properties or theorems of development activities as the unit, and the small problems as unit of the examples and exercises. Contrastive analysis of different activities between and within editions of the same activity is made in three types:statements, questions and the process of the proof .
After a comparative study of textbooks from both sides of the Straits, it is found that:
(1) About statements, both editions provide students with geometric proof opportunities are most illustrated with a figure;
(2) About questions,most questions are mostly only related to claims to provide students with geometric proof opportunities, in this type, exposition mostly requires students to make a statement or determine its value, examples and exercise to calculate with numbers, only to proof and related to claims and proof performance are also different, Kang Xuan edition lacks a counterexample type.
(3) About the process of the proof, the proportion of deductive proof is the highest, and the lowest in the exercise. The proportion of implicit is the highest in examples and exercise; Both versions lack the type of empirical proof in the examples and exercise.

Key words:Geometric proof, textbook analysis, content analysis
第一章 緒論10
第一節 研究背景與動機10
第二節 研究目的與問題13
第三節 名詞解釋13
第四節 研究範圍與限制14
第二章 文獻探討15
第一節 幾何證明的意義及重要性15
第二節 教科書及其研究方法18
第三節 數學教科書幾何證明分析的理論架構20
第四節 數學教科書幾何證明實證研究38
第三章 研究方法40
第一節 研究方法與分析架構40
第二節 研究對象與分析內容44
第三節 研究流程45
第四節 內容分析之類目建構46
第四章 研究結果與討論71
第一節 不同活動類型的幾何證明機會的分析與比較73
第二節 題幹表徵類型的分析與比較75
第三節 題目問句的分析比較85
第四節 證實過程的分析比較117
第五章 結論與建議126
第一節 結論126
第二節 建議131
第三節 反思於不足132
參考文獻133
壹、 中文部分133
貳、西文部分135
附錄141
壹、中文部分
王文科(2001)。教育研究法。臺北市:五南。
王立心(2009)。 書評:尋找課程論和教科書設計的理論基礎 (增訂版)。 教科書研究,2(1),165-172。
王申懷(2000)。數學證明的教育價值。課程。教材。教法,(5),24-26。doi:10.19877/j.cnki.kcjcjf.2000.05.005
李健恆(2012)。結合不同學習策略的工作例對理解幾何證明之影響研究(未出版碩士論文)。臺灣師範大學,台北市。
呂鳳琳(2010)。幾何證明不同文本呈現方式對學生認知負荷與閱讀理解影響之研究(未出版碩士論文)。臺灣師範大學,台北市。
李樹臣、齊欣(2017)。「圖形與幾何」學習內容研究。山東教育,(Z3),78-80。
周雪梅(2012)。中美幾何教材內容中的推理與證明的比較研究(碩士學位論文)。取自
http://cnki.sris.com.tw.nthulib-oc.nthu.edu.tw/kcms/detail/detail.aspx?recid=&FileName=1012434546.nh&DbName=CMFD201301&DbCode=CMFD&uid=SzF2cVZsbE0vWGRFQ2JkV21YditVVktJRzlUUWtSaTYwWnlCRVNQYTdPUjVMbjFM
周珮儀, & 鄭明長(2008)。教科書研究方法論之探究。課程與教學,
11(1),193-222。
林群(2019)。人教數學七上。北京市:人民教育出版社。
林群(2019)。人教數學七下。北京市:人民教育出版社。
林群(2019)。人教數學八上。北京市:人民教育出版社。
林群(2019)。人教數學八下。北京市:人民教育出版社。
林群(2019)。人教數學九上。北京市:人民教育出版社。
林群(2019)。人教數學九下。北京市:人民教育出版社。
林碧珍、鄭俊彥、蔡寶桂(2018)。國小六年級學生 [數學論證評量工具] 之建構。測驗學刊,65(3),257-289。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。 學教育學刊,23(1),83-110。
林碧珍(2020)。素養導向的數學臆測教學模式。小學教學 (數學版),(1),5。
林福來、郭汾派、林光賢(1985)。國中生比例的概念發展。國科會專題研究計畫報告(編號:NSC74-0111-S003-02)。臺北市:行政院科學委員會。
洪有情(2018)。康軒數學國中一上。新北市:康軒文教事業股份有限公司。
洪有情(2018)。康軒數學國中二下。新北市:康軒文教事業股份有限公司。
洪有情(2018)。康軒數學國中三下。新北市:康軒文教事業股份有限公司。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
徐偉民、董修齊(2012)。國小幾何教材內容之比較: 以臺灣與芬蘭為例。當代教育研究季刊, 20(3),39-86。
馬增瑩(2011)。師範生數學證明素養的調查研究。科教導刊 (上旬刊),(3),175-176。doi:10.16400/j.cnki.kjdks.2011.03.001
教育部(2011)。義務教育數學課程標準。北京市:教育部。
教育部(2007)。臺灣教育部九年一貫課程數學領域課程綱要。臺北市:教育部
游文通(2012)。國小數學資優生解幾何題策略之探究:以小學數學奧林匹亞競賽獲獎選手為例。臺北教育大學數學暨資訊教育學系學位論文,1-157。
黃光雄、簡茂發(2000)。教育研究法。臺北市:師大書苑。
楊國樞、文崇一、吳聰賢、李亦園(1989)。社會及行為科學研究法(第十三版)。臺北市:東華。
歐用生(1991)。內容分析法。臺北市:師大書苑。
歐用生。(1994)。教育研究法。臺北市:師大書苑。

貳、西文部分
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp. 216–235). London, England: Hooder and Stoughton.
Battista, M. T. (2007). The Development of Geometric and Spatial Thinking. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908). Charlotte, NC: Information Age.
Begle, E. G. (1973). Some lessons learned by SMSG. The Mathematics Teacher, 66(3), 207-214.
Bell, A. W. (1976). A study of pupils' proof-explanations in mathematical situations. Educational studies in mathematics, 7, 23-40.
Berelson, B. (1952). Content analysis in communication research. Glencoe, UK:Free Press.
Bierhoff, H. (1996). Laying the foundations of numeracy: A comparison of primary school textbooks in Britain, National Institute of Economic and Social Research (NIESR) Discussion Papers (No.90). London, UK: National Institute of Economic and Social Research.
Boero, P. (1999). Argumentation and mathematical proof: a complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on The Teaching and Learning of Mathematical Proof, 7,8. Retrieved from http://www.lettredelapreuve.org/OldPreuve/Newsletter/990708Theme/990708ThemeUK.html
Callison, D. (2003), “Textbook”, School Library Media Activities Monthly, 19(8), 31-40.
De Villiers, M. D. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17-24.
De Villiers, M. (1999). Rethinking proof with sketchpad. Emeryville, CA: Key Curriculum Press.
Douek, N. (1999). Argumentation and conceptualization in context: a case study on sunshadows in primary school. Educational Studies in Mathematics, 39(1-3), 89-110.
Epp, S. S. (1998). A unified framework for proof and disproof. The Mathematics Teacher, 91(8), 708-713.
Fan, L., & Zhu, Y. (2007). Representation of problem-solving procedures: A comparative look at China, Singapore, and US mathematics textbooks. Educational studies in Mathematics, 66(1), 61-75.
Fischbein, E. (1982). Intuition and proof. For the learning of mathmatics, 3(2), 9-24.2.
Floden, R. E. (2002). The measurement of opportunity to learn. In National Research Council (Ed.), Methodological advances in cross-national surveys of educational achievement (pp. 231-266). Washington, DC: National Academies Press.
Fujita, Taro, Jones, Keith & Kunimune, Susumu (2009) The design of textbooks and their influence on students’ understanding of ‘proof’ in lower secondary school. In Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education (pp. 172-177). Taipei, TaiWan: National Taiwan Normal University.
Fujita, T., Jones, K., & Kunimune, S. (2010). Students’ geometrical constructions and proving activities: A case of cognitive unity. In Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (pp. 9-16). Belo Horizonte, Brazil: Universidade Federal de Minas Gerais.
Grouws, D. A., Smith, M. S., & Sztajn, P. (2000). The preparation and teaching practices of United States mathematics teachers: Grades 4 and 8. In P. Kloosterman & F. Lester (Eds.), The 1990 through 2000 mathematics assessments of the National Assessment of Educational Progress: Results and Interpretations (pp. 221-267). Reston, VA: National Council of Teachers of Mathematics.
Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational studies in mathematics, 44(1-2), 5-23.
Hanna, G. (2014). The width of a proof. PNA, 9(1), 29-39.
Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Scoenfeld, J. Kaput & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234–283). Providence, RI: American Mathematical Society.
Harel, G., & Tall, D. (1991). The general, the abstract, and the generic in advanced mathematics. For the learning of mathematics, 11(1), 38-42.
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842.
Healy, L., & Hoyles, C. (2000). L. Healy, C. Hoyles A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
Hong, D. S., Choi, K. M., Runnalls, C., & Hwang, J. (2018). Do textbooks address known learning challenges in area measurement? A comparative analysis. Mathematics Education Research Journal, 30(3), 325-354.
Houdement, C., & Kuzniak, A. (2003). Elementary geometry split into different geometrical paradigms. In Proceedings of CERME,3,1-9.
Jones, K. (2002), Issues in the teaching and learning of geometry. In L.
Haggarty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice(pp. 121–139). London, UK: Routledge Falmer.
Herbst, P. (2002) Engaging students in proving: a double bind on the
teacher. Journal for Research in Mathematics Education 33(3), 17
Kaput, J.J.(1987). Representation systems and mathematics. In C. Janvier(Ed.), Problems of representaiton in the teaching and learning of mathematics, 19-26. Hillsdale, NJ:Erlbaum.
Komatsu, K., & Tsujiyama, Y. (2013). Principles of task design to foster proofs and refutations in mathematical learning: Proof problem with diagram. Task design in mathematics education: Proceedings of ICMI Study, 22, 471-479.
Kunimune, S., Fujita, T., & Jones, K. (2010). Strengthening students’ understanding of ‘proof’ in geometry in lower secondary school. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 756–765). Lyon, FC: ERME
Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (2009). Proceedings of the ICMI Study 19 conference: Proof and proving in mathematics education.Taipei, Taiwan: National Taiwan Normal University.
Mason, J., Burton, L. & Stacey, K. (1985). Thinking mathematically(Rev ed.). Harlow, UK: Addison-Wesley.
Mayer,R.E.(1992). Thinking, problem solving, congnition. New York: W.H. Freeman and Company.
McKnight, C., Crosswhite, F. J., Dossey, J., Kifer, E., Swafford, J. O., Travers, K. J.. (1987). The underachieving curriculum: Assessing U.S. school mathematics from an international perspective. Champaign, IL: Stripes.
Mikk, J. (2000). Textbook: Research and writing. Frankfurt am Main, DE: Peter Lang.
Miyakawa, T. (2012). Proof in geometry: A comparative analysis of French and Japanese textbooks. Educational Studies in Mathematics, 94(1), 37-54.
Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics, 41, 47–68. doi:10.1023/A:1003956532587.
Miyazaki, M., Fujita, T., & Jones, K. (2017). Students’ understanding of the structure of deductive proof. Educational Studies in Mathematics, 94(2), 223-239.
National Council of Teachers of Mathematics. (1989). Principles and standards for school mathematics. Reston, Virginia, USA: NCTM.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, Virginia, USA: NCTM.
Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2011). Reasoning-andproving in geometry textbooks: What is being proved? In L. R. Wiest & T. Lamberg (Eds.), In Proceedings of the 33rd annual meeting of the North American chapter of the international group for the psychology of mathematics education (pp. 347–355). Reno, NV: University of Nevada.
Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2014). The mathematical nature of reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51-79.
Reys, B. J., Reys, R. E., & Chavez, O. (2004). Why Mathematics Textbooks Matter. Educational Leadership, 61(5), 61-66.
Schoenfeld, A. H. (1994). What do we know about mathematics curricula?.The Journal of Mathematical Behavior, 13(1), 55-80.
Shimizu, S. (1981). Characteristics of “problem” in mathematics education (II). Epsilon: Bulletin of Department of Mathematics Education, Aichi University of Education, 23, 29-43. [in Japanese]
Shumway, R. J. (1974). Negative instances in mathematical concept acquisition: Transfer effects between the concepts of commutativity and associativity. Journal for Research in Mathemat-ics Education, 5, 197-211.
Sowder, L. (1980). Concept and principle learning. In R. J. Shumway (Ed.), Research in mathematics education (pp. 244-285). Reston, VA: National Council of Teachers of Mathe- matics.
Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. Second handbook of research on mathematics teaching and learning, 1(1), 319-370.
Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical thinking and learning, 11(4), 258-288.
Stylianides, G.J. (2014). Textbook analyses on reasoning-and-proving: Significance and methodological challenges. International Journal of Education Research, 64, 63–70. https://doi.org/10.1016/j.ijer.2014.01.002
Tarr, J. E., Chávez, ó., Reys, R. E., & Reys, B. J. (2006). From the written to the enacted curricula: The intermediary role of middle school mathematics teachers in shaping students' opportunity to learn. School Science and Mathematics, 106(4), 191-201.
Tatto, M. T., & Senk, S. (2011). The mathematics education of future primary and secondary teachers: Methods and findings from the Teacher Education and Development Study in Mathematics. Journal of Teacher Education, 62(2), 121-137.
Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education, 43(3), 253-295.
Thurston, W.P.: 1994, ‘On proof and progress in mathematics’, Bulletin of the American Mathematical Society 30(2), 161–177.
Woo, J. et al. (2009 b). Joonghakyo Soohak 2[Middle School Mathematics 2]. Seoul, Korea: Dusan Publishing Co.
Wu, H. H. (1996). The role of Euclidean geometry in high school. The Journal of Mathematical Behavior, 15(3), 221-237.
Zhang, D., & Qi, C. (2019). Reasoning and proof in eighth-grade mathematics textbooks in China. International Journal of Educational Research, 98, 77-90.
Zhu,Y. & Fan,L. (2006). Focus on the Representation of Problem Types in Intended Curriculum: A Comparison of Selected Mathematics Textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4,609-626.





 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *