|
壹、中文部分 王文科(2001)。教育研究法。臺北市:五南。 王立心(2009)。 書評:尋找課程論和教科書設計的理論基礎 (增訂版)。 教科書研究,2(1),165-172。 王申懷(2000)。數學證明的教育價值。課程。教材。教法,(5),24-26。doi:10.19877/j.cnki.kcjcjf.2000.05.005 李健恆(2012)。結合不同學習策略的工作例對理解幾何證明之影響研究(未出版碩士論文)。臺灣師範大學,台北市。 呂鳳琳(2010)。幾何證明不同文本呈現方式對學生認知負荷與閱讀理解影響之研究(未出版碩士論文)。臺灣師範大學,台北市。 李樹臣、齊欣(2017)。「圖形與幾何」學習內容研究。山東教育,(Z3),78-80。 周雪梅(2012)。中美幾何教材內容中的推理與證明的比較研究(碩士學位論文)。取自 http://cnki.sris.com.tw.nthulib-oc.nthu.edu.tw/kcms/detail/detail.aspx?recid=&FileName=1012434546.nh&DbName=CMFD201301&DbCode=CMFD&uid=SzF2cVZsbE0vWGRFQ2JkV21YditVVktJRzlUUWtSaTYwWnlCRVNQYTdPUjVMbjFM 周珮儀, & 鄭明長(2008)。教科書研究方法論之探究。課程與教學, 11(1),193-222。 林群(2019)。人教數學七上。北京市:人民教育出版社。 林群(2019)。人教數學七下。北京市:人民教育出版社。 林群(2019)。人教數學八上。北京市:人民教育出版社。 林群(2019)。人教數學八下。北京市:人民教育出版社。 林群(2019)。人教數學九上。北京市:人民教育出版社。 林群(2019)。人教數學九下。北京市:人民教育出版社。 林碧珍、鄭俊彥、蔡寶桂(2018)。國小六年級學生 [數學論證評量工具] 之建構。測驗學刊,65(3),257-289。 林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。 學教育學刊,23(1),83-110。 林碧珍(2020)。素養導向的數學臆測教學模式。小學教學 (數學版),(1),5。 林福來、郭汾派、林光賢(1985)。國中生比例的概念發展。國科會專題研究計畫報告(編號:NSC74-0111-S003-02)。臺北市:行政院科學委員會。 洪有情(2018)。康軒數學國中一上。新北市:康軒文教事業股份有限公司。 洪有情(2018)。康軒數學國中二下。新北市:康軒文教事業股份有限公司。 洪有情(2018)。康軒數學國中三下。新北市:康軒文教事業股份有限公司。 陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。 徐偉民、董修齊(2012)。國小幾何教材內容之比較: 以臺灣與芬蘭為例。當代教育研究季刊, 20(3),39-86。 馬增瑩(2011)。師範生數學證明素養的調查研究。科教導刊 (上旬刊),(3),175-176。doi:10.16400/j.cnki.kjdks.2011.03.001 教育部(2011)。義務教育數學課程標準。北京市:教育部。 教育部(2007)。臺灣教育部九年一貫課程數學領域課程綱要。臺北市:教育部 游文通(2012)。國小數學資優生解幾何題策略之探究:以小學數學奧林匹亞競賽獲獎選手為例。臺北教育大學數學暨資訊教育學系學位論文,1-157。 黃光雄、簡茂發(2000)。教育研究法。臺北市:師大書苑。 楊國樞、文崇一、吳聰賢、李亦園(1989)。社會及行為科學研究法(第十三版)。臺北市:東華。 歐用生(1991)。內容分析法。臺北市:師大書苑。 歐用生。(1994)。教育研究法。臺北市:師大書苑。
貳、西文部分 Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp. 216–235). London, England: Hooder and Stoughton. Battista, M. T. (2007). The Development of Geometric and Spatial Thinking. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908). Charlotte, NC: Information Age. Begle, E. G. (1973). Some lessons learned by SMSG. The Mathematics Teacher, 66(3), 207-214. Bell, A. W. (1976). A study of pupils' proof-explanations in mathematical situations. Educational studies in mathematics, 7, 23-40. Berelson, B. (1952). Content analysis in communication research. Glencoe, UK:Free Press. Bierhoff, H. (1996). Laying the foundations of numeracy: A comparison of primary school textbooks in Britain, National Institute of Economic and Social Research (NIESR) Discussion Papers (No.90). London, UK: National Institute of Economic and Social Research. Boero, P. (1999). Argumentation and mathematical proof: a complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on The Teaching and Learning of Mathematical Proof, 7,8. Retrieved from http://www.lettredelapreuve.org/OldPreuve/Newsletter/990708Theme/990708ThemeUK.html Callison, D. (2003), “Textbook”, School Library Media Activities Monthly, 19(8), 31-40. De Villiers, M. D. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17-24. De Villiers, M. (1999). Rethinking proof with sketchpad. Emeryville, CA: Key Curriculum Press. Douek, N. (1999). Argumentation and conceptualization in context: a case study on sunshadows in primary school. Educational Studies in Mathematics, 39(1-3), 89-110. Epp, S. S. (1998). A unified framework for proof and disproof. The Mathematics Teacher, 91(8), 708-713. Fan, L., & Zhu, Y. (2007). Representation of problem-solving procedures: A comparative look at China, Singapore, and US mathematics textbooks. Educational studies in Mathematics, 66(1), 61-75. Fischbein, E. (1982). Intuition and proof. For the learning of mathmatics, 3(2), 9-24.2. Floden, R. E. (2002). The measurement of opportunity to learn. In National Research Council (Ed.), Methodological advances in cross-national surveys of educational achievement (pp. 231-266). Washington, DC: National Academies Press. Fujita, Taro, Jones, Keith & Kunimune, Susumu (2009) The design of textbooks and their influence on students’ understanding of ‘proof’ in lower secondary school. In Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education (pp. 172-177). Taipei, TaiWan: National Taiwan Normal University. Fujita, T., Jones, K., & Kunimune, S. (2010). Students’ geometrical constructions and proving activities: A case of cognitive unity. In Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (pp. 9-16). Belo Horizonte, Brazil: Universidade Federal de Minas Gerais. Grouws, D. A., Smith, M. S., & Sztajn, P. (2000). The preparation and teaching practices of United States mathematics teachers: Grades 4 and 8. In P. Kloosterman & F. Lester (Eds.), The 1990 through 2000 mathematics assessments of the National Assessment of Educational Progress: Results and Interpretations (pp. 221-267). Reston, VA: National Council of Teachers of Mathematics. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational studies in mathematics, 44(1-2), 5-23. Hanna, G. (2014). The width of a proof. PNA, 9(1), 29-39. Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Scoenfeld, J. Kaput & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234–283). Providence, RI: American Mathematical Society. Harel, G., & Tall, D. (1991). The general, the abstract, and the generic in advanced mathematics. For the learning of mathematics, 11(1), 38-42. Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842. Healy, L., & Hoyles, C. (2000). L. Healy, C. Hoyles A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428. Hong, D. S., Choi, K. M., Runnalls, C., & Hwang, J. (2018). Do textbooks address known learning challenges in area measurement? A comparative analysis. Mathematics Education Research Journal, 30(3), 325-354. Houdement, C., & Kuzniak, A. (2003). Elementary geometry split into different geometrical paradigms. In Proceedings of CERME,3,1-9. Jones, K. (2002), Issues in the teaching and learning of geometry. In L. Haggarty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice(pp. 121–139). London, UK: Routledge Falmer. Herbst, P. (2002) Engaging students in proving: a double bind on the teacher. Journal for Research in Mathematics Education 33(3), 17 Kaput, J.J.(1987). Representation systems and mathematics. In C. Janvier(Ed.), Problems of representaiton in the teaching and learning of mathematics, 19-26. Hillsdale, NJ:Erlbaum. Komatsu, K., & Tsujiyama, Y. (2013). Principles of task design to foster proofs and refutations in mathematical learning: Proof problem with diagram. Task design in mathematics education: Proceedings of ICMI Study, 22, 471-479. Kunimune, S., Fujita, T., & Jones, K. (2010). Strengthening students’ understanding of ‘proof’ in geometry in lower secondary school. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 756–765). Lyon, FC: ERME Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (2009). Proceedings of the ICMI Study 19 conference: Proof and proving in mathematics education.Taipei, Taiwan: National Taiwan Normal University. Mason, J., Burton, L. & Stacey, K. (1985). Thinking mathematically(Rev ed.). Harlow, UK: Addison-Wesley. Mayer,R.E.(1992). Thinking, problem solving, congnition. New York: W.H. Freeman and Company. McKnight, C., Crosswhite, F. J., Dossey, J., Kifer, E., Swafford, J. O., Travers, K. J.. (1987). The underachieving curriculum: Assessing U.S. school mathematics from an international perspective. Champaign, IL: Stripes. Mikk, J. (2000). Textbook: Research and writing. Frankfurt am Main, DE: Peter Lang. Miyakawa, T. (2012). Proof in geometry: A comparative analysis of French and Japanese textbooks. Educational Studies in Mathematics, 94(1), 37-54. Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics, 41, 47–68. doi:10.1023/A:1003956532587. Miyazaki, M., Fujita, T., & Jones, K. (2017). Students’ understanding of the structure of deductive proof. Educational Studies in Mathematics, 94(2), 223-239. National Council of Teachers of Mathematics. (1989). Principles and standards for school mathematics. Reston, Virginia, USA: NCTM. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, Virginia, USA: NCTM. Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2011). Reasoning-andproving in geometry textbooks: What is being proved? In L. R. Wiest & T. Lamberg (Eds.), In Proceedings of the 33rd annual meeting of the North American chapter of the international group for the psychology of mathematics education (pp. 347–355). Reno, NV: University of Nevada. Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2014). The mathematical nature of reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51-79. Reys, B. J., Reys, R. E., & Chavez, O. (2004). Why Mathematics Textbooks Matter. Educational Leadership, 61(5), 61-66. Schoenfeld, A. H. (1994). What do we know about mathematics curricula?.The Journal of Mathematical Behavior, 13(1), 55-80. Shimizu, S. (1981). Characteristics of “problem” in mathematics education (II). Epsilon: Bulletin of Department of Mathematics Education, Aichi University of Education, 23, 29-43. [in Japanese] Shumway, R. J. (1974). Negative instances in mathematical concept acquisition: Transfer effects between the concepts of commutativity and associativity. Journal for Research in Mathemat-ics Education, 5, 197-211. Sowder, L. (1980). Concept and principle learning. In R. J. Shumway (Ed.), Research in mathematics education (pp. 244-285). Reston, VA: National Council of Teachers of Mathe- matics. Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. Second handbook of research on mathematics teaching and learning, 1(1), 319-370. Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical thinking and learning, 11(4), 258-288. Stylianides, G.J. (2014). Textbook analyses on reasoning-and-proving: Significance and methodological challenges. International Journal of Education Research, 64, 63–70. https://doi.org/10.1016/j.ijer.2014.01.002 Tarr, J. E., Chávez, ó., Reys, R. E., & Reys, B. J. (2006). From the written to the enacted curricula: The intermediary role of middle school mathematics teachers in shaping students' opportunity to learn. School Science and Mathematics, 106(4), 191-201. Tatto, M. T., & Senk, S. (2011). The mathematics education of future primary and secondary teachers: Methods and findings from the Teacher Education and Development Study in Mathematics. Journal of Teacher Education, 62(2), 121-137. Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education, 43(3), 253-295. Thurston, W.P.: 1994, ‘On proof and progress in mathematics’, Bulletin of the American Mathematical Society 30(2), 161–177. Woo, J. et al. (2009 b). Joonghakyo Soohak 2[Middle School Mathematics 2]. Seoul, Korea: Dusan Publishing Co. Wu, H. H. (1996). The role of Euclidean geometry in high school. The Journal of Mathematical Behavior, 15(3), 221-237. Zhang, D., & Qi, C. (2019). Reasoning and proof in eighth-grade mathematics textbooks in China. International Journal of Educational Research, 98, 77-90. Zhu,Y. & Fan,L. (2006). Focus on the Representation of Problem Types in Intended Curriculum: A Comparison of Selected Mathematics Textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4,609-626.
|