帳號:guest(18.191.92.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉書瑜
作者(外文):Liu, Shu-Yu
論文名稱(中文):利用眼球追蹤技術於大學生數學垂直與平行概念能力的探究
論文名稱(外文):Using Eye-Tracking to Explore the Ability of College Students' Mathematics of Vertical and Parallel Concepts
指導教授(中文):王子華
指導教授(外文):Wang, Tzu-Hua
口試委員(中文):陳湘淳
周金城
口試委員(外文):Chen, Hsiang-Chun
Chou, Chin-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:教育與學習科技學系
學號:108091517
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:119
中文關鍵詞:眼動儀van Hiele幾何思維模式空間能力解題策略迷思概念
外文關鍵詞:eye trackingthe van Hiele model of thinking in geometryspatial abilityproblem-solving strategymyth concept
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究在探討大學生進行垂直與平行的判斷時,空間能力試題在形體的「輔助邊線」數量與題目「文字語序」的分類下,其作答效率、眼動指標及解題原因的差異。
研究中,第一階段透過van Hiele幾何思維模式進行平面能力的試題設計,發現對參與者來說對「有無垂直記號」、「線段與直線的交點狀態」及「等角記號下的垂直與平行條件判定」的問題迷思。接著,在第二階段「空間能力測驗」與第三階段「空間能力再理解」後,整體在不同的分類下,「輔助邊線」彼此存在差異,「文字語序」則是部分有差異,透過眼動指標的對應,綜合總訪問時間、訪問次數與平均訪問時間的結果,發現在「輔助邊線」的試題分類彼此間有顯著差異,而以「無輔助邊線」的類型最困難;在「文字語序」的試題類下在試題難度排序後相鄰的兩類型試題間無差異,其中「前起點與後終點相同」的類型最困難,「同向平行」的類型最簡單。此外,藉由眼動行為模式的觀察,試題辨識時會透過「邊」做為連結中心進行資訊的蒐集。透過高低分組的比較下,則僅在「無輔助邊線」的注視總時間上存在差異;而在解題方法上高分組多以整體的視角進行目標的分析,低分組則是透過部分的視角連結相關元素進行分析。
因此,在教學上建議:一、透過難易度循序進行教學,二、適當介入輔助邊線的資訊進行提示或觀察,三、透過順向與逆向的邊線關係進行試題轉換,刺激視覺的辨識,四、可以擴增圖片辨識時的視角,促進學生在未來的空間幾何與向量學習得到良好發展。
This study explores the differences in answer efficiency, eye movement measures, and reasons for problem-solving the spatial ability test questions of college students when they make vertical and parallel judgments in the classification of "auxiliary edge" and "word order".
In the first stage of the research, we used the van Hiele model of thinking in geometry to design the test of plane ability. It was found that were judged on the conditions of "presence of vertical mark", "point of intersection of line segment and straight line", and "vertical and parallel conditions under equiangular notation" for the participants. In the second stage, there are differences in the "auxiliary side" and partially differences in the "word order" in the overall test the test of spatial ability. Through the correspondence of the eye movement measures, in the comprehensive results of total visit duration, visit count and average visit duration, it is found that there are significant differences in the classification of the "auxiliary edge" test questions. "No-assisted side " is the most difficult. Under the "Word Order" category, there is no difference between the two adjacent types of questions after the questions are sorted by difficulty. Among them, the type with "the same of front-starting point and back-ending point" is the most difficult, and the type with "parallel of orthodromic" is the simplest. In addition, by observing the pattern of eye movement behavior, the "side" is used as the link center to collect information when identifying the test questions. In addition, through the observation of eye movement behavior patterns, the "side" will be used as the link center to collect information during the identification of test questions. Under the comparison of high and low groupings, there is only a difference in the total gaze time of "No-assisted side". In terms of problem-solving methods, the high-group uses an overall-perspective to analyze the target, while the low-group uses a partial-perspective to connect related elements for analysis.
Therefore, there some suggestion for teaching: 1. Teaching through the difficulty level in order. 2. It should be appropriate to intervene the information of auxiliary side to prompt or observe. 3. The test questions are converted through the orthodromic and antidromic relationship, which stimulates visual recognition. 4. Enlarging the viewing angle of image recognition. in the future, students will develop well in space geometry and vector learning.
第壹章 緒論 1
第一節 問題背景 1
第二節 研究目的 2
第三節 名詞操作性定義 3
第四節 研究範圍與限制 5
第貳章 文獻探討 6
第一節 眼動相關理論與指標 6
第二節 幾何與眼動追蹤 12
第三節 van Hiele幾何思維模式 13
第四節 空間能力與幾何學習 14
第五節 台灣空間幾何課程的學習歷程 17
第六節 空間幾何、垂直與平行的學習環境 24
第參章 研究方法 26
第一節 研究設計 26
第二節 研究對象 28
第三節 研究工具 28
第四節 資料處理方法 35
第肆章 研究結果 37
第一節 垂直與平行平面能力測驗 37
第二節 垂直與平行空間能力測驗 39
一、不同輔助邊線數量上之題型表現 39
二、不同文字語序上之題型表現 52
三、小結 69
第三節 垂直與平行空間能力再理解 71
第伍章 研究結論與建議 89
第一節 研究結論 89
第二節 研究建議 92
參考文獻 94
附錄 103
王毓婕、陳光勳(2016)。運用幾何軟體Cabri 3D與實體積木教具教學對國小二年級學童學習空間旋轉概念之影響。臺灣數學教育期刊,3(1),19-54。
吳昭容(2019)。眼球追蹤技術在幾何教育的應用與限制。臺灣數學教育期刊,6(2),1-25。doi: 10.6278/tjme.201910_6(2).001
李佳竹、袁媛(2018)。不同幾何思考層次的國中生判別正立方體透視圖邊長關係之研究。臺灣數學教育期刊,5(2),19-38。
李其瑋、黃淑華、黃格崇(2018)。積木立體造形設計之經驗解構與學習—具體實像與心理表像的連接。設計與環境學報,(19),1-21。
周保男、吳重言(2014)。立體視覺化工具融入國小表面積教學之研究:以 Google SketchUp 為例。臺灣數學教育期刊,1(1),1-18。doi: 10.6278/tjme.20140307.002
林勇吉、秦爾聰、段曉林(2014)。數學探究之意義初探與教學設計實例。臺灣數學教師,35(2),1-18。
林素秋(2017)。閱讀理解策略教學成效之行動研究:以國小中年級弱勢低閱讀能力學童為對象。師資培育與教師專業發展期刊,10(2),29-58。
林寀雯、吳昭容(2016)。從眼動型態探討閱讀幾何文本的視覺化與推理歷程。教育學刊,47(2),41-77。doi: 10.3966/156335272016120047002
洪珮華、馬睿平、林榮泰(2017)。學童手繪空間表現與三維設計能力之關係探究。設計學報,22(3),45-68。
徐偉民、董修齊(2012)。國小幾何教材內容之比較:以臺灣與芬蘭為例。當代教育研究,20(3),39-86。
秦爾聰、林勇吉、陳俊源(2009)。探討高二學生在三角探究教學中的解題表現。科學教育學刊,17(5),433-458。
康鳳梅、蕭吉男(2004)。機械製圖員專業能力標準之研究。技術及職業教育學報,(8)。41-63。
張景媛(1996)。國中生建構幾何概念之研究暨統整式合作學習的幾何教學策略效果之評估。教育心理學報,(28),99-144。
張靜文、張麗芬(2014)。幼兒幾何圖形辨識之研究。教育研究學報,48(2),101-106。
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─數學領域。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/49/pta_18524_6629744_60029.pdf
教育部(2020)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─數學領域課程手冊。取自https://www.naer.edu.tw/upload/1/16/doc/2021/數學領域課程手冊(定稿版).pdf
許舜淵、胡政德(2014)。動態幾何環境下大學生幾何探索之研究。臺灣數學教育期刊,1(1),49-77。
陳師潔(2011)。國小二年級兒童以觸覺辨識正方體連塊的解題活動之個案研究(碩士論文)。 取自https://hdl.handle.net/11296/h5y9qm
陳琪瑤、吳昭容(2012)。幾何證明文本閱讀的眼動研究:圖文比重及圖示著色效果。教育實踐與研究,25(2),35-66。
閏國利、白學軍(2018)。眼動分析技術的基礎與應用。北京:北京師範大學出版社。
隋雪、高敏、向慧雯(2018)。視覺認知中的眼動理論及實證研究。北京:科學出版社。
黃幸美(2015)。整合三維空間幾何概念與體積的數位教材與教學試驗。科學教育學刊,23(1),53-82。doi:10.6173/CJSE.2015.2301.03
黃國綸、許慧玉(2016)。幾何圖形例子分類對八年級國中生學習四邊形包含關係之研究。臺灣數學教師,37(2),50-71。
楊德清、鄭婷芸(2015)。臺灣、美國與新加坡國中階段幾何教材內容之分析比較。教育科學研究期刊,60(1),33-72。
蔡政容、張庭毅、簡鈺姍(2015)。運用互動式3D動畫與3D視覺技術提昇國小學童空間幾何學習成效之研究。自然科學與教育,1(1),91-112。
鄭英豪、陳建誠、許慧玉(2017)。國中生在動態幾何軟體輔助下臆測幾何性質之研究。臺灣數學教育期刊,4(1),1-34。
鄭海蓮、陳世玉(2007)。標準化空間能力測驗之建模驗證。教育研究與發展期刊,3(4),181-215。
蘇意雯、陳政宏、王淑明、王美娟(2015)。幾何文本閱讀理解的實作研究。臺灣數學教育期刊,2(2),25-51。
Altmann, G. T. M., Garnham, A., & Dennis, Y. (1992). Avoiding the garden path: Eye movements in context. Journal of Memory and Language, 31, 685–712.
Andrá, C., Lindström, P., Arzarello, F., Holmqvist, K., Robutti, O., & Sabena, C. (2015). Reading mathematics representations: An eye-tracking study. International Journal of Science and Mathematics Education, 13(2), 237–259.
Blythe, H. I., Häikiö, T., Bertam, R., Liversedge, S. P., & Hyönä, J. (2011). Reading disappearing text: Why do children refixate words? Vision Research, 51, 84–92.
Chen, X. (2011). Visuelle Analyse von Eye-Tracking-Daten. Diplomarbeit Nr. 3183, Universität Stuttgart, Stuttgart.
Chen, Y. C., & Yang, F. Y. (2014). Probing the relationship between process of spatial problems solving and science learning: An eye tracking approach. International Journal of Science and Mathematics Education, 12(3), 579–603.
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of reasoning on mathematics teaching and learning (pp.420-464). New York, NY: Macmillan.
Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. In M. Montgomery Lindquist (Ed.), Learning and teaching geometry, K–12, Yearbook of the National Council of Teachers of Mathematics, (pp. 1–16). Reston, VA: National Council of Teachers of Mathematics.
DeSutter, D., & Stieff, M. (2017). Teaching students to think spatially through embodied actions: Design principles for learning environments in science, technology, engineering, and mathematics. Cognitive Research: Principles and Implications, 2(1), 22.
Fong, K. N., Ma, W., Pang, H., Tang, P. P., & Law, L. L. (2019). Immediate effects of coloured overlays on reading performance of preschool children with an autism spectrum disorder using eye tracking. Research in Developmental Disabilities, 89, 141-148.
Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education Monograph, 3. https://doi.org/10.2307/749957
Halari, R., Sharma, T., Hines, M., Andrew, C., Simmons, A., & Kumari, V. (2005). Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 169(1), 1–14. doi:10.1007/s00221-005-0118-7 PMID:16284758
Hartatiana, Darhim, & Nurlaelah, E. (2017b). Student's Spatial Reasoning through Model Eliciting Activities with Cabri 3D. Journal of Physics: Conference Series, 895(1).
Huang Y. T., & Gordon, P. C. (2011). Distinguishing the time course of lexical and discourse processes through context, coreference, and quantified expressions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(4), 966–978.
Inhoff, A. W., Radach, R., Starr, M., & Greenberg, S. (2000). Allocation of visuospatial attention and saccade programming during reading. In A. Kennedy, R. Radach, D. Heller, & J. Pynte (Eds.), Reading as a perceptual process, pp. 221–246. Oxford: North-Holland/Elsevier.
Janicic, P. (2009). Geometry constructions language. Journal of Autmated Reasoning, 44, 1-2.
Jobrack, M., Bosse, M. J., Chandler, K., & Adu-Gyamfi, K. (2018). Problem solving trajectories in dynamic mathematics environments. International Journal of Mathematics Teaching and Learning, (1) 69-89. file:///Users/bossemj/Downloads/72-Article%20Text-669-2-10-20180830%20(4).pdf
Just, M.A. , & Carpenter, P.A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 4, 329–354.
Khooshabeh, P., & Hegarty, M. (2010). Representations of shape during mental rotation. CA: Palo Alto. Paper presented at the AAAI Spring Symposium Series.
Khooshabeh, P., Hegarty, M., & Shipley, T. F. (2013). Individual differences in mental rotation. Experimental psychology.
Kohlhase, A., & Fürsich, M. (2016). Understanding Mathematical Expressions: An Eye-Tracking Study. FM4M/MathUI/ThEdu/DP/WIP@CIKM, 42–50.
Kohlhase, A., Kohlhase, M., & Fürsich, M. (2017). Visual structure in mathematical expressions. In H. Geuvers, M. England, O. Hasan, F. Rabe, & O. Teschke (Eds.), Intelligent computer mathematics (pp. 208–223). Cham, Switzerland: Springer
Kok, E. M., & Jarodzka, H. (2017). Before your very eyes: The value and limitations of eye tracking in medical education. Medical Education, 51(1), 114-122. doi: 10.1111/medu.13066
Krejtz, K., Wisiecka, K., Krejtz, I., Holas, P., Olszanowski, M., & Duchowski, A. T. (2018). Dynamics of emotional facial expression recognition in individuals with social anxiety. ETRA '18: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, 43, 1–9.
Lee, W. K., & Wu, C. J. (2018). Eye movements in integrating geometric text and figure: Scanpaths and given-new effects. International Journal of Science and Mathematics Education, 16(4), 699-714. doi: 10.1007/s10763-016-9790-2
Lin, J. J. H., & Lin, S. S. (2014a). Tracking eye movements when solving geometry problems with handwriting devices. Journal of Eye Movement Research, 7(1), 1-15.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56(6), 1479-1498.
Liversedge, S. P., Paterson, K. B., & Pickering, M. J. (1998). Eye Movements and Measures of Reading Time. Eye Guidance in Reading and Scene Perception. Amsterdam: Elsevier, 55–75.
Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 40, pp. 181-248). Erlbaum.
Mak, M. & Willems, R. M. (2018). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535.
Maribel, M. P. (2019). Pre-learning vocabulary before viewing captioned video: an eye-tracking study. Language Learning Journal, 47, 460–478.
Mayer, R. E. (1983) Thinking, Problem Solving, Cognition (New York: W. H. Freeman).
Miller, H. E., & Simmering, V. R. (2018). Children's attention to task-relevant information accounts for relations between language and spatial cognition. Journal of Experimental Child Psychology, 172, 107-129. doi:10.1016/j.jecp.2018.02.006
Mirault, J., Yeaton, J., Broqua, F., Dufau, S., Holcomb, P. J., & Grainger, J. (2020). Parafoveal-on-foveal repetition effects in sentence reading: A co-registered eye-tracking and EEG study. Psychophysiology. doi:https://doi.org/10.1111/psyp.13553
Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In Advances in Child Development and Behaviour. In J. B. Benson (Ed.), (Vol. 42, pp. 197-243). San Diego, CA, US: Elsevier Academic Press.
Muldner, K. K. M. A. E., & Burleson, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127–137. https://doi.org/10.1016/j.chb.2013.10.060
Muldner, K., Burleson, W. (2015). Utilizing sensor data to model students' creativity in a digital environment. Computers in Human Behavior, 42, 127-137.
Nazareth, A., Herrera, A., & Pruden, S. M. (2013). Explaining sex differences in mental rotation: role of spatial activity experience. Cognitive Processing, 14, 201–204. https://doi.org/10.1007/s10339-013-0542-8.
Negi, S., & Mitra, R. (2020). Fixation duration and the learning process: an eye tracking study with subtitled videos. Journal of Eye Movement Research, 13(6). https://doi.org/10.16910/jemr.13.6.1
Obersteiner, A., & Tumpek, C. (2016). Measuring fraction comparison strategies with eye-tracking. ZDM, 48(3), 255-266.
Pamungkas, E. W., Basile, V., & Patti, V. (2020).Misogyny detection in Twitter: A multilingual and cross-domain study. Information Processing & Management, 57 (6) (2020), Article 102360.
Piaget, J. & Inhelder, B. (1956). The child’s conception of space. New York:Humanities Press, Inc.
Pollatsek, A., & Hyönä, J. (2005). The role of semantic transparency in the processing of Finnish compound words. Language and Cognitive Processes, 20 (1/2), 261–290.
Pollatsek, A., Bertram, R., & Hyönä, J. (2011). Pro-cessing novel and lexicalized Finnish compound words. Journal of Cognitive Psychology, 23, 795–810. doi:10.1080/20445911.2011.570257
Posner, M. I., & Cohen, Y. (1984). “Components of visual attention,” in Attention and Performance, Vol. 10, eds H. Bouma and D. G. Bouhuis (Hillsdale, NJ: Erlbaum), 531-556.
Pruden, S. M., & Levine, S. C. (2017). Parents’ spatial language mediates a sex difference in preschoolers’ spatial-language use. Psychological Science, 28, 1583-1596. https://doi.org/10.1177/0956797617711968
Pylyshyn Z. W. (2006). Seeing and visualizing: it’s not what you think. Cambridge, NY, United States: MIT Press.
Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125-157.
Reilly, R. G., & O'Regan, J. K. (1998). Eye movement control in reading: A simulation of some word-targeting strategies. Vision Research, 38, 303-317.
Reilly, R. G., & Radach, R. (2003). Foundations of an interactive activation model of eye movement control in reading. In: Hyönä J, Radach R, Deubel H, editors. The mind’s eye: Cognitive and applied aspects of eye movements. Oxford: Elsevier. pp. 429-455.
Reingold, E. M., & Glaholt, M. G. (2014). Cognitive control of fixation duration in visual search: the role of extrafoveal processing. Visual Cognition, 22, 610-634. doi: 10.1080/13506285.2014.881443
Schindler, M., & Lilienthal, A. J. (2019). Domain-specific interpretation of eye tracking data: Towards a refined use of the eye-mind hypothesis for the field of geometry. Educational Studies in Mathematics, 101(1), 123-139. doi: 10.1007/s10649-019-9878-z
Schoenfeld, A. H. (1985). Making sense of “out loud” problem-solving protocols. The Journal of Mathematical Behavior, 4(2), 171-191.
Underwood, G., Everatt, J. (1992). The role of eye movements in reading: Some limitations of the eye-mind assumption. Advances in Psychology, 88, 111-169.
van Hiele, P. (1986). Structure and insight. A theory of mathematics education. Orlando: Academic.
Veldre, A., Reichle, E. D., Wong, R., & Andrews, S. (2020). The effect of contextual plausibility on word skipping during reading. Cognition, 197, 104184. https://doi.org/10.1016/j.cognition.2020.104184
Wagemans, F. M. A., Sleegers, W., Brandt, M. J., & Zeelenberg, M. (2019). Attentional biases associated with individual differences in disgust sensitivity: An eye tracking study[Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/k53ec
Wang, C., Tsai, M., & Tsai, C. (2016). Multimedia recipe reading: Predicting learning outcomes and diagnosing cooking interest using eye-tracking measures. Computers in Human Behavior, 62, 9-18.
Xue, S., Jacobs, A. M., & Lüdtke, J. (2020). What Is the Difference? Rereading Shakespeares Sonnets — An Eye Tracking Study. Frontiers in Psychol, 11:421. doi: 10.3389/fpsyg.2020.00421
Zhang, G., Yuan, B., Hua, H., Lou, Y., Lin, N., & Li, Y. (2021). Individual differences in first-pass fixation duration in reading are related to resting-state functional connectivity. Brain and Language, 213, ISSN 0093-934X, https://doi.org/10.1016/j.bandl.2020.104893.
(此全文20260701後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *