|
1. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14. 2. Seltzer, M.J., et al., Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res, 2010. 70(22): p. 8981-7. 3. Luan, W., et al., miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase. Biochem Biophys Res Commun, 2018. 495(1): p. 46-52. 4. Auten, R.L. and J.M. Davis, Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res, 2009. 66(2): p. 121-7. 5. Wei, Z., et al., Metabolism of Amino Acids in Cancer. Front Cell Dev Biol, 2020. 8: p. 603837. 6. Vettore, L., R.L. Westbrook, and D.A. Tennant, New aspects of amino acid metabolism in cancer. Br J Cancer, 2020. 122(2): p. 150-156. 7. Aggarwal, V., et al., Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules, 2019. 9(11). 8. Jin, M., et al., MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res, 2019. 38(1): p. 136. 9. Samimi, A., et al., The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Rev Rep, 2020. 16(2): p. 262-275. 10. Cichon, M.A. and D.C. Radisky, ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget, 2014. 5(9): p. 2827-38. 11. Lim, S.O., et al., Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology, 2008. 135(6): p. 2128-40, 2140.e1-8. 12. Micalizzi, D.S., S.M. Farabaugh, and H.L. Ford, Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia, 2010. 15(2): p. 117-34. 13. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37. 14. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun, 2020. 11(1): p. 5120. 15. Fang, M., et al., Collagen as a double-edged sword in tumor progression. Tumour Biol, 2014. 35(4): p. 2871-82. 16. Zhu, G.G., et al., Immunohistochemical study of type I collagen and type I pN-collagen in benign and malignant ovarian neoplasms. Cancer, 1995. 75(4): p. 1010-7. 17. Huijbers, I.J., et al., A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One, 2010. 5(3): p. e9808. 18. Januchowski, R., et al., Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed Res Int, 2014. 2014: p. 365867. 19. Naba, A., et al., Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife, 2014. 3: p. e01308. 20. Erler, J.T., et al., Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 2009. 15(1): p. 35-44. 21. Erler, J.T., et al., Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006. 440(7088): p. 1222-6. 22. Cawston, T.E. and D.A. Young, Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res, 2010. 339(1): p. 221-35. 23. Itoh, Y. and H. Nagase, Matrix metalloproteinases in cancer. Essays Biochem, 2002. 38: p. 21-36. 24. Pinti, M., et al., Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta, 2016. 1857(8): p. 1300-1306. 25. Jonas, K., et al., Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell, 2013. 154(3): p. 623-36. 26. Bota, D.A. and K.J. Davies, Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol, 2002. 4(9): p. 674-80. 27. Lu, B., et al., Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell, 2013. 49(1): p. 121-32. 28. Lu, B., et al., Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem, 2007. 282(24): p. 17363-74. 29. Kao, T.Y., et al., Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis, 2015. 6(2): p. e1642. 30. Bezawork-Geleta, A., et al., LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep, 2015. 5: p. 17397. 31. Ngo, J.K. and K.J. Davies, Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med, 2009. 46(8): p. 1042-8. 32. Nie, X., et al., Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One, 2013. 8(11): p. e81084. 33. Gibellini, L., et al., Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. Faseb j, 2014. 28(12): p. 5122-35. 34. Quiros, P.M., et al., ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep, 2014. 8(2): p. 542-56. 35. Cheng, C.W., et al., Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis, 2013. 4(6): p. e681. 36. Kuo, C.L., et al., Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett, 2020. 474: p. 138-150. 37. Liu, Y., et al., Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget, 2014. 5(22): p. 11209-24. 38. Phang, J.M., The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul, 1985. 25: p. 91-132. 39. Donald, S.P., et al., Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res, 2001. 61(5): p. 1810-5. 40. Krishnan, N., M.B. Dickman, and D.F. Becker, Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med, 2008. 44(4): p. 671-81. 41. Liu, W., et al., Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides. Sci Rep, 2015. 5: p. 17206. 42. Hollinshead, K.E.R., et al., Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis. Cell Rep, 2018. 22(12): p. 3107-3114. 43. Liu, W., et al., Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A, 2012. 109(23): p. 8983-8. 44. Zeng, T., et al., Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer. Med Oncol, 2017. 34(2): p. 27. 45. Reversade, B., et al., Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet, 2009. 41(9): p. 1016-21. 46. Kretz, R., et al., Defect in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities. J Inherit Metab Dis, 2011. 34(3): p. 731-9. 47. Eble, J.A. and S. Niland, The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis, 2019. 36(3): p. 171-198. 48. Riegler, J., et al., Tumor Elastography and Its Association with Collagen and the Tumor Microenvironment. Clin Cancer Res, 2018. 24(18): p. 4455-4467. 49. Barcus, C.E., et al., Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem, 2013. 288(18): p. 12722-32. 50. Wang, H.M., et al., Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci, 2010. 101(12): p. 2612-20. 51. Kuo, M.L., et al., PYCR1 and PYCR2 Interact and Collaborate with RRM2B to Protect Cells from Overt Oxidative Stress. Sci Rep, 2016. 6: p. 18846. 52. Stein, L.R. and S. Imai, The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab, 2012. 23(9): p. 420-8. 53. Guo, L., et al., Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun, 2019. 10(1): p. 845. 54. Ohlund, D., et al., Type IV collagen is a tumour stroma-derived biomarker for pancreas cancer. Br J Cancer, 2009. 101(1): p. 91-7. 55. Fang, S., et al., Clinical significance and biological role of cancer-derived Type I collagen in lung and esophageal cancers. Thorac Cancer, 2019. 10(2): p. 277-288. 56. Li, H.X., et al., Expression of αvβ6 integrin and collagen fibre in oral squamous cell carcinoma: association with clinical outcomes and prognostic implications. J Oral Pathol Med, 2013. 42(7): p. 547-56. 57. Bandyopadhyay, A. and S. Raghavan, Defining the role of integrin alphavbeta6 in cancer. Curr Drug Targets, 2009. 10(7): p. 645-52. 58. Quirós, P.M., et al., ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell reports, 2014. 8(2): p. 542-556. 59. Pindborg, J.J., et al., Oral submucous fibrosis as a precancerous condition. Scand J Dent Res, 1984. 92(3): p. 224-9. 60. Phang, J.M. and W. Liu, Proline metabolism and cancer. Front Biosci (Landmark Ed), 2012. 17: p. 1835-45. 61. Montanez, E., et al., Kindlin-2 controls bidirectional signaling of integrins. Genes Dev, 2008. 22(10): p. 1325-30.
|