|
1. Yap, M.K.K., et al., Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta tropica, 2014. 133: p. 15-25. 2. Sintiprungrat, K., et al., A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. Journal of proteomics, 2016. 132: p. 131- 143. 3. Lauridsen, L.P., et al., Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Journal of proteomics, 2017. 150: p. 98-108. 4. Tan, C.H., et al., Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. Journal of proteomics, 2019. 206: p. 103418. 5. Wüster, W., Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon, 1996. 34(4): p. 399-406. 6. Chen, C.-M., et al., Bacterial infection in association with snakebite: a 10- year experience in a northern Taiwan medical center. Journal of Microbiology, Immunology and Infection, 2011. 44(6): p. 456-460. 7. Wallach, V., W. Wuester, and D.G. Broadley, In praise of subgenera: taxonomic status of cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zootaxa, 2009. 2236(1): p. 26-36. 8. Kulkeaw, K., et al., Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon, 2007. 49(7): p. 1026-1041. 9. Li, S., et al., Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochemical Journal, 2004. 384(1): p. 119-127. 10. Dutta, S., et al., Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. Journal of proteomics, 2017. 156: p. 29-39. 11. Huang, H.-W., et al., Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range 62 and systematic geographic variation. Journal of proteomics, 2015. 128: p. 92-104. 12. Condrea, E., et al., Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from Naja nigricollis snake venom and less toxic phospholipases A2 from Hemachatus haemachatus and Naja naja atra snake venoms. Toxicon, 1981. 19(1): p. 61-71. 13. Ownby, C.L., et al., Lysine 49 phospholipase A2 proteins. Toxicon, 1999. 37(3): p. 411-445. 14. Chang, L.-S., et al., A novel neurotoxin, cobrotoxin b, from Naja naja atra (Taiwan cobra) venom: purification, characterization, and gene organization. The Journal of Biochemistry, 1997. 122(6): p. 1252-1259. 15. Roy, A., et al., Structural and Functional Characterization of a Novel Homodimeric Three-finger Neurotoxin from the Venom of Ophiophagus hannah (King Cobra)*♦. Journal of Biological Chemistry, 2010. 285(11): p. 8302-8315. 16. Liu, C.-C., et al., Pathogenesis of local necrosis induced by Naja atra venom: Assessment of the neutralization ability of Taiwanese freeze-dried neurotoxic antivenom in animal models. PLoS neglected tropical diseases, 2020. 14(2): p. e0008054. 17. Wu, P.-L., et al., The role of sulfatide lipid domains in the membrane poreforming activity of cobra cardiotoxin. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012. 1818(5): p. 1378-1385. 18. Wang, C.-H., et al., Cobra cardiotoxin-induced cell death in fetal rat cardiomyocytes and cortical neurons: different pathway but similar cell surface target. Toxicon, 2005. 46(4): p. 430-440. 19. Takacs, Z., K.C. Wilhelmsen, and S. Sorota, Cobra (Naja spp.) nicotinic acetylcholine receptor exhibits resistance to erabu sea snake (Laticauda semifasciata) short-chain α-neurotoxin. Journal of molecular evolution, 2004. 58(5): p. 516-526. 20. Ogawa, Y., et al., Complete amino acid sequence and phylogenetic analysis of a long-chain neurotoxin from the venom of the African banded water cobra, Boulengerina annulata. Toxicon, 2004. 43(7): p. 855-858. 21. Nirthanan, S. and M.C. Gwee, Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of pharmacological sciences, 2004. 94(1): p. 1-17. 22. Brunton, T.L. and J. Fayrer, II. On the nature and physiological action of the poison of Naja tripudians and other Indian venomous snakes.—Part I. 63 Proceedings of the Royal Society of London, 1873. 21(139-147): p. 358- 374. 23. Condrea, E., Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia, 1974. 30(2): p. 121-129. 24. Sun, J. and M. Walker, Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon, 1986. 24(3): p. 233- 245. 25. Ownby, C.L., J.E. Fletcher, and T.R. Colberg, Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon, 1993. 31(6): p. 697-709. 26. Chen, K.-C., et al., The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect. Toxicon, 2007. 50(6): p. 816-824. 27. Liu, B.-S., Study on Venom Proteome of Asiatic Cobras and its Application on Novel Antivenom Development, in Institute of Biotechnology. 2019, National Tsing Hua University: Hsinchu. p. 148. 28. Jayaraman, G., et al., Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)—identification of structural features important for the lethal action of snake venom cardiotoxins. Protein science, 2000. 9(4): p. 637-646. 29. Wang, P.-C., et al., Consensus sequence L/PKSSLL mimics crucial epitope on Loop III of Taiwan cobra cardiotoxin. Biochemical and biophysical research communications, 2009. 387(3): p. 617-622. 30. 100 Years of Glory and Century of Continuity, A Centennial History of Government-Manufactured Vaccine Production in Taiwan. 2014. 31. Ming-Yi, L. and H. Ruey-Jen, Toxoids and antivenoms of venomous snakes in Taiwan. Journal of Toxicology: Toxin Reviews, 1997. 16(3): p. 163-175. 32. Chen, J.-C., et al., Risk of immediate effects from F (ab) 2 bivalent antivenin in Taiwan. Wilderness & environmental medicine, 2000. 11(3): p. 163-167. 33. Ratanabanangkoon, K., et al., A simple and novel strategy for the production of a pan-specific antiserum against elapid snakes of Asia. PLOS neglected tropical diseases, 2016. 10(4): p. e0004565. 34. de la Rosa, G., et al., Horse immunization with short-chain consensus α- neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nature communications, 2019. 10(1): p. 1-8. 64 35. Bermúdez-Méndez, E., et al., Innovative immunization strategies for antivenom development. Toxins, 2018. 10(11): p. 452. 36. Suntrarachun, S., et al., cDNA cloning, sequencing, and expression of α- and β-neurotoxins from Thai-Malayan krait. Indian J. Biotechnol, 2010. 9: p. 31-37. 37. Cao, Y., et al., Bioinformatics-based design of novel antigenic B-cell linear epitopes of Deinagkistrodon acutus venom. Eur Rev Med Pharmacol Sci, 2016. 20(4): p. 781-787. 38. Liu, M., DNA vaccines: a review. Journal of internal medicine, 2003. 253(4): p. 402-410. 39. Hasson, S.S.A.A., Generation of antibodies against disintegrin and cysteine-rich domains by DNA immunization: An approach to neutralize snake venom-induced haemorrhage. Asian Pacific Journal of Tropical Biomedicine, 2017. 7(3): p. 198-207. 40. Ramos, H.R., et al., A heterologous multiepitope DNA prime/recombinant protein boost immunisation strategy for the development of an antiserum against Micrurus corallinus (coral snake) venom. PLoS neglected tropical diseases, 2016. 10(3): p. e0004484. 41. Dhama, K., et al., DNA vaccines and their applications in veterinary practice: current perspectives. Veterinary research communications, 2008. 32(5): p. 341-356. 42. Minke, J., et al., Use of DNA and recombinant canarypox viral (ALVAC) vectors for equine herpes virus vaccination. Veterinary immunology and immunopathology, 2006. 111(1-2): p. 47-57. 43. Lunn, D., et al., Antibody responses to DNA vaccination of horses using the influenza virus hemagglutinin gene. Vaccine, 1999. 17(18): p. 2245- 2258. 44. Harrison, R., et al., Antibody from mice immunized with DNA encoding the carboxyl‐disintegrin and cysteine‐rich domain (JD9) of the haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal component of viper venom. Clinical & Experimental Immunology, 2000. 121(2): p. 358-363. 45. Wagstaff, S.C., et al., Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. PLoS medicine, 2006. 3(6): p. e184. 46. Laustsen, A.H., Antivenom in the Age of Recombinant DNA Technology, in Handbook of Venoms and Toxins of Reptiles. 2021, CRC Press. p. 499- 510. 65 47. Mcauley, A., et al., Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Science, 2008. 17(1): p. 95-106. 48. Vinther, T.N., et al., Insulin analog with additional disulfide bond has increased stability and preserved activity. Protein Science, 2013. 22(3): p. 296-305. 49. Bulaj, G., Formation of disulfide bonds in proteins and peptides. Biotechnology advances, 2005. 23(1): p. 87-92. 50. Depuydt, M., J. Messens, and J.-F. Collet, How proteins form disulfide bonds. Antioxidants & redox signaling, 2011. 15(1): p. 49-66. 51. de Marco, A., et al., Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC biotechnology, 2007. 7(1): p. 1-9. 52. Vasina, J.A. and F. Baneyx, Expression of Aggregation-Prone Recombinant Proteins at Low Temperatures: A Comparative Study of theEscherichia coli cspAandtacPromoter Systems. Protein expression and purification, 1997. 9(2): p. 211-218. 53. Weickert, M.J., et al., Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli. Applied and environmental microbiology, 1997. 63(11): p. 4313-4320. 54. San-Miguel, T., P. Pérez-Bermúdez, and I. Gavidia, Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus, 2013. 2(1): p. 1-4. 55. Malavasi, N., et al., Protein refolding at high pressure: optimization using eGFP as a model. Process biochemistry, 2011. 46(2): p. 512-518. 56. Lee, S.H., et al., Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure. Protein science, 2006. 15(2): p. 304-313. 57. Chura-Chambi, R.M., et al., Refolding of endostatin from inclusion bodies using high hydrostatic pressure. Analytical Biochemistry, 2008. 379(1): p. 32-39. 58. De Sutter, K., et al., Production of enzymatically active rat protein disulfide isomerase in Escherichia coli. Gene, 1994. 141(2): p. 163-170. 59. Saez, N.J., et al., A strategy for production of correctly folded disulfiderich peptides in the periplasm of E. coli, in Heterologous Gene Expression in E. coli. 2017, Springer. p. 155-180. 66 60. Klint, J.K., et al., Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PloS one, 2013. 8(5): p. e63865. 61. Baneyx, F., Recombinant protein expression in Escherichia coli. Current opinion in biotechnology, 1999. 10(5): p. 411-421. 62. Morrow, J.F., et al., Replication and Transcription of Eukaryotic DNA in Esherichia coli. Proceedings of the National Academy of Sciences, 1974. 71(5): p. 1743-1747. 63. Ratzkin, B. and J. Carbon, Functional expression of cloned yeast DNA in Escherichia coli. Proceedings of the National Academy of Sciences, 1977. 74(2): p. 487-491. 64. Chen, R., Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology advances, 2012. 30(5): p. 1102-1107. 65. Çelik, E. and P. Çalık, Production of recombinant proteins by yeast cells. Biotechnology advances, 2012. 30(5): p. 1108-1118. 66. Mattanovich, D., et al., Recombinant protein production in yeasts. Recombinant gene expression, 2012: p. 329-358. 67. Ciarkowska, A. and A. Jakubowska, Pichia pastoris as an expression system for recombinant protein production. Postepy biochemii, 2013. 59(3): p. 315-321. 68. Almo, S.C. and J.D. Love, Better and faster: improvements and optimization for mammalian recombinant protein production. Current opinion in structural biology, 2014. 26: p. 39-43. 69. Brondyk, W.H., Selecting an appropriate method for expressing a recombinant protein. Methods in enzymology, 2009. 463: p. 131-147. 70. Huang, S.Y., et al., Global disulfide bond profiling for crude snake venom using dimethyl labeling coupled with mass spectrometry and RADAR algorithm. Analytical chemistry, 2014. 86(17): p. 8742-8750. 71. Huang, S.Y., et al., Assignment of disulfide-linked peptides using automatic a1 ion recognition. Analytical chemistry, 2008. 80(23): p. 9135- 9140. 72. Micsonai, A., et al., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic acids research, 2018. 46(W1): p. W315-W322. 73. Greenfield, N.J. and G.D. Fasman, Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 1969. 8(10): p. 4108-4116. 67 74. Shi, R., et al., Imidazole as a catalyst for in vitro refolding of enhanced green fluorescent protein. Archives of biochemistry and biophysics, 2007. 459(1): p. 122-128. 75. Sreerama, N., S.Y. Venyaminov, and R.W. Woody, Estimation of the number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein science, 1999. 8(2): p. 370-380. 76. Sreerama, N. and R.W. Woody, A self-consistent method for the analysis of protein secondary structure from circular dichroism. Analytical biochemistry, 1993. 209(1): p. 32-44. 77. Abdul-Gader, A., A.J. Miles, and B.A. Wallace, A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics, 2011. 27(12): p. 1630-1636. 78. Mao, Y.-C., et al., Naja atra snakebite in Taiwan. Clinical Toxicology, 2018. 56(4): p. 273-280. 79. Hung, D.-Z., M.-Y. Liau, and S.-Y. Lin-Shiau, The clinical significance of venom detection in patients of cobra snakebite. Toxicon, 2003. 41(4): p. 409-415. 80. Gutiérrez, J., et al., Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1986. 85(1): p. 171-175. 81. Foroushani, N.S., et al., Developing recombinant phospholipase D1 (rPLD1) toxoid from Iranian Hemiscorpius lepturus scorpion and its protective effects in BALB/c mice. Toxicon, 2018. 152: p. 30-36. 82. Chang, J.-Y., T.K.S. Kumar, and C. Yu, Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species. Biochemistry, 1998. 37(19): p. 6745-6751. 83. Huang, S.-Y., et al., Monitoring the disulfide bonds of folding isomers of synthetic CTX A3 polypeptide using MS-based technology. Toxins, 2019. 11(1): p. 52. 84. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2005. 1751(2): p. 119-139. 85. Dubovskii, P.V., et al., Antibacterial activity of cardiotoxin-like basic polypeptide from cobra venom. Bioorganic & medicinal chemistry letters, 2020. 30(3): p. 126890. 68 86. Sun, Y.-J., et al., Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membranebinding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry, 1997. 36(9): p. 2403-2413. 87. Kao, P.-H., S.-R. Lin, and L.-S. Chang, Interaction of Naja naja atra cardiotoxin 3 with H-trisaccharide modulates its hemolytic activity and membrane-damaging activity. Toxicon, 2010. 55(7): p. 1387-1395. 88. Chien, K.-Y., et al., Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of biological chemistry, 1994. 269(20): p. 14473-14483. 89. Rangel-Santos, A. and I. Mota, Effect of heating on the toxic, immunogenic and immunosuppressive activities of Crotalus durissus terrificus venom. Toxicon, 2000. 38(10): p. 1451-1457. 90. Rebbouh, F., M.-F. Martin-Eauclaire, and F. Laraba-Djebari, Chitosan nanoparticles as a delivery platform for neurotoxin II from Androctonus australis hector scorpion venom: Assessment of toxicity and immunogenicity. Acta tropica, 2020. 205: p. 105353. 91. Leong, P.K., et al., Immunological cross-reactivity and neutralization of the principal toxins of Naja sumatrana and related cobra venoms by a Thai polyvalent antivenom (Neuro Polyvalent Snake Antivenom). Acta tropica, 2015. 149: p. 86-93. 92. Sheng, Z., et al., Electroporation enhances protective immune response of a DNA vaccine against Japanese encephalitis in mice and pigs. Vaccine, 2016. 34(47): p. 5751-5757. 93. Yu, R., et al., Comparative immunogenicity of the tetanus toxoid and recombinant tetanus vaccines in mice, rats, and cynomolgus monkeys. Toxins, 2016. 8(7): p. 194. 94. Liu, B.-S., et al., Identification of immunoreactive peptides of toxins to simultaneously assess the neutralization potency of antivenoms against neurotoxicity and cytotoxicity of naja atra venom. Toxins, 2018. 10(1): p. 10. 95. Jahnke, W., et al., Structure of cobra cardiotoxin CTX I as derived from nuclear magnetic resonance spectroscopy and distance geometry calculations. Journal of molecular biology, 1994. 240(5): p. 445-458. 96. Lee, S.-C., et al., Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to 69 target distinct types of sulfated glycoconjugates on cell surface. Journal of Biological Chemistry, 2014. 289(29): p. 20170-20181. 97. Sue, S.-C., et al., Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry, 2001. 40(43): p. 12782-12794. 98. Jang, J.-Y., et al., Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry, 1997. 36(48): p. 14635-14641. 99. Chen, T.-S., et al., Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry, 2005. 44(20): p. 7414-7426. |