帳號:guest(3.133.126.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃致勛
作者(外文):Huang, Chih-Hsun
論文名稱(中文):製備與評估重組心臟毒素於新型抗眼鏡蛇毒血清製作
論文名稱(外文):Generation and evaluation of recombinant cardiotoxin for the production of new generation cobra antiserum
指導教授(中文):宋旺洲
蘇士哲
指導教授(外文):Sung, Wang-Chou
Sue, Shih-Che
口試委員(中文):李敏西
洪東榮
口試委員(外文):Lee, Min-Shi
Hung, Dong-Zong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:108080592
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:89
中文關鍵詞:重組蛇毒蛋白心臟毒素免疫抗眼鏡蛇毒血清
外文關鍵詞:Recombinant snake toxinCardiotoxinImmunizationCobra antiserum
相關次數:
  • 推薦推薦:0
  • 點閱點閱:168
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
心臟毒素(Cardiotoxins)是眼鏡蛇毒中具細胞毒性的三指毒素,是造成蛇傷病患傷口壞死的主要成分。施打抗蛇毒血清是治療蛇傷唯一的有效策略。但心臟毒素結構免疫性低,使得傳統粗蛇毒免疫產生的抗蛇毒血清對心臟毒素的中和效價受到影響。先前的研究指出以純化之毒素作為免疫原可以提升抗血清效價,然而天然毒素純化取得不易。
在本研究中,我們以大腸桿菌系統,備製重組心臟毒素及心臟毒素表現質體,於小鼠模式中進行高免疫實驗。實驗結果顯示,重組心臟毒素與純化之心臟毒素具有相似的免疫原性,在相同免疫劑量下(25 μg),可在小鼠體內誘發相似的專一性抗體效價。此外,結合心臟毒素表現質體與重組心臟毒素進行異相免疫流程,小鼠抗血清亦可以產生相似
的專一性抗體效價。細胞毒性中和試驗結果顯示,單一重組心臟毒素免疫或心臟毒素表現質體-重組蛋白異相免疫所產生之小鼠抗血清,皆能有效中和孟加拉眼鏡蛇(Naja kaouthia)蛇毒之細胞毒性,其效價分別為2.6 μg/mg 與9.9 μg/mg。綜合上述,本研究展現重組免疫原誘導中和性抗體的潛力,可做為發展新型抗蛇毒血清之基礎。
Cardiotoxins are cytotoxic protein with three-finger structure in the cobra venom, and they are the main reason to cause wound necrosis in the snakebite patients. Currently, antivenoms injection are only specific treatment for envenoming by snakebites. However, the structures of cardiotoxins are low immunogenicity that can not effectively induce antibody response, which might affect the neutralizing potency in traditional antivenom that is immunized with crude venom. Previous studies have indicated that using purified toxins as immunogens can enhance the antibody titer of antisera. However, the purified toxin is difficult to obtain. Hence, in this study, we attempt to express the recombinant cardiotoxin and cardiotoxin-expression plasmid as the immunogens via Escherichia coli system. The immunogens were used to induce hyperimmune antisera in mice, and the antibody response of antisera were analyzed. The experiment results shown, at the same immunization dose (25 μg), two groups of antisera that separately immunized with the recombinant cardiotoxin or purified cardiotoxins have the similar specific antibody titer. Additionally, the mice antiserum heterogeneously immunized with cardiotoxin-expression plasmid and recombinant cardiotoxin also displayed the same antibody titer. The results of cytotoxicity neutralization assay shown, both the recombinant cardiotoxin or DNA-based immunized antisera demonstrated the neutralizing potency to the cobra venom (Naja kaouthia), with titers of 2.6 μg/mg and 9.9 μg/mg, respectively. Overall, this study reveals the potential of the recombinant immunogens to induce neutralizing antibody, which can be used as the basis for the development of novel antivenom in the future.
中文摘要 ........................................................................................................... I
Abstract ........................................................................................................... II
Acknowledgement ......................................................................................... IV
Contents ........................................................................................................... V
List of Figures ................................................................................................ IX
List of Tables .................................................................................................. XI
List of appendices......................................................................................... XII
Abbreviation ............................................................................................... XIV
CHAPTER 1 Introduction .............................................................................. 1
1.1 Snake envenomation .............................................................................................................. 1
1.2 Cobra venom proteome ......................................................................................................... 1
1.3 Cobra antivenom ................................................................................................................... 5
1.4 Novel immunization approaches for antivenom .................................................................... 6
1.5 Expression of disulfide-rich protein ...................................................................................... 7
1.6 Research aims ...................................................................................................................... 10
CHAPTER 2 Materials and Methods .......................................................... 11
2.1 Venom and antivenom ......................................................................................................... 11
2.2 Toxins separation from Naja atra venom by RP-HPLC ...................................................... 11
2.3 Heat-shock transformation of E. coli ................................................................................... 12
VI
2.4 Expression of rDsbC-6x His-CTX A5 in E. coli ................................................................. 12
2.5 Preparation of cell lysate ..................................................................................................... 13
2.6 Purification of rDsbC-CTX A5 through affinity chromatography ...................................... 13
2.7 Tobacco etch virus protease digestion of rDsbC-CTX A5 ................................................... 14
2.8 Purification of rCTX A5 through affinity chromatography ................................................. 14
2.9 Purification of rCTX A5 through ion-exchange chromatography ....................................... 14
2.10 Protein buffer exchange ....................................................................................................... 15
2.11 Sodium dodecyl sulfate polyacrylamide gel electrophoresis ............................................... 15
2.12 Western blot ......................................................................................................................... 15
2.13 Digestion and dimethyl labeling of disulfide bond-linked peptides .................................... 16
2.14 LC-MS/MS analysis of dimethyl-labeled and disulfide bond-linked peptides .................... 17
2.15 Determination of secondary structure by circular dichroism spectroscopy ......................... 17
2.16 Preparation of pVAX1-CTX A5 plasmid ............................................................................. 18
2.17 Digestion of restriction enzyme ........................................................................................... 19
2.18 DNA agarose gel electrophoresis ........................................................................................ 19
2.19 Cytotoxicity determination of venom and toxins ................................................................ 19
2.20 In vitro neutralization assay ................................................................................................. 20
2.21 Animal immunization .......................................................................................................... 21
2.22 Antibody titer determination by indirect ELISA ................................................................. 22
CHAPTER 3 Results ..................................................................................... 24
3.1 Flow chart of purification for recombinant CTX A5 ........................................................... 24
VII
3.2 Expression and purification of rDsbC-CTX A5 from E. coli .............................................. 26
3.3 Purification of rCTX A5 ...................................................................................................... 28
3.4 Molecular weight comparison between native and recombinant CTX A5 .......................... 31
3.5 Secondary structure determination by normalized circular dichroism spectrometer ........... 33
3.6 MS/MS spectra of Asp-n/trypsin digested and dimethyl-labeled CTX A5 peptides ........... 35
3.7 Immunization with recombinant CTX A5 in BALB/c mice ................................................ 40
3.8 Immunoreactivity of recombinant CTX A5 immunized antisera ........................................ 42
3.9 Neutralizing potency of antisera from mice immunized with recombinant CTX A5 .......... 44
3.10 DNA purification and characterization ................................................................................ 47
3.11 DNA-prime/protein-boost immunization in BALB/c mice ................................................. 49
3.12 Immunoreactivity of antisera from DNA-prime/protein-boost immunization .................... 50
3.13 Neutralizing potency of antisera from mice immunized with DNA-prime/protein-boost
immunization ....................................................................................................................... 53
Discussion ....................................................................................................... 56
References ....................................................................................................... 61
Appendices ...................................................................................................... 70
Appendix figure I. Toxin separation from Naja atra venom. ........................................................ 70
Appendix figure II. Cytotoxicity characterization of toxins. ........................................................ 71
Appendix figure III. Protein identification of separated CTX A5. ................................................ 72
Appendix figure IV. Storage buffer of rCTX A5 for lyophilization. ............................................. 73
Appendix figure V. Analysis of rCTX A5 folding intermediate. ................................................... 74
VIII
Appendix figure VI. Alignment of the amino acid sequences of CTX A5 with the CTXs of Naja
kaouthia (Thailand). ............................................................................................................ 75
Appendix figure VII. Recombinant protein and plasmid purification timeline. ............................ 76
Appendix figure VIII. Plasmid construction for DNA immunization. .......................................... 77
Appendix figure IX. Nucleic acid agarose electrophoresis of pVAX1-CTX and pVAX1-NTX
plasmid. ............................................................................................................................... 78
Appendix figure X. Immunization with pVAX1-CTX A3 and pVAX1-NTX in mice. ................. 79
Appendix table I. Pairwise structure alignment of CTX A5 with CTXs. ...................................... 80
Appendix table II. Purification of recombinant CTX A5 .............................................................. 81
Appendix table III. Gradient table of venom separation. .............................................................. 82
Appendix table IV. Gradient table of CTX analysis. ..................................................................... 83
Appendix table V. Gradient table of rDsbC-CTX A5 purification. ............................................... 84
Appendix table VI. Gradient table of rCTX A5 purification. ........................................................ 85
Appendix table VII. Sequence of DsbC-CTX A5. ........................................................................ 86
Appendix table VIII. PCR amplification of CTX A5 DNA. ......................................................... 87
Appendix table IX. Overlapping PCR of CTX A5 signal peptide. ............................................... 88
Appendix table X. Estimation of protein secondary structure from circular dichroism spectra. ... 89
1. Yap, M.K.K., et al., Proteomic characterization of venom of the medically
important Southeast Asian Naja sumatrana (Equatorial spitting cobra).
Acta tropica, 2014. 133: p. 15-25.
2. Sintiprungrat, K., et al., A comparative study of venomics of Naja naja
from India and Sri Lanka, clinical manifestations and antivenomics of an
Indian polyspecific antivenom. Journal of proteomics, 2016. 132: p. 131-
143.
3. Lauridsen, L.P., et al., Exploring the venom of the forest cobra snake:
Toxicovenomics and antivenom profiling of Naja melanoleuca. Journal of
proteomics, 2017. 150: p. 98-108.
4. Tan, C.H., et al., Proteomic insights into short neurotoxin-driven, highly
neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity
correlation of cobra envenomation in Asia. Journal of proteomics, 2019.
206: p. 103418.
5. Wüster, W., Taxonomic changes and toxinology: systematic revisions of
the Asiatic cobras (Naja naja species complex). Toxicon, 1996. 34(4): p.
399-406.
6. Chen, C.-M., et al., Bacterial infection in association with snakebite: a 10-
year experience in a northern Taiwan medical center. Journal of
Microbiology, Immunology and Infection, 2011. 44(6): p. 456-460.
7. Wallach, V., W. Wuester, and D.G. Broadley, In praise of subgenera:
taxonomic status of cobras of the genus Naja Laurenti (Serpentes:
Elapidae). Zootaxa, 2009. 2236(1): p. 26-36.
8. Kulkeaw, K., et al., Proteome and immunome of the venom of the Thai
cobra, Naja kaouthia. Toxicon, 2007. 49(7): p. 1026-1041.
9. Li, S., et al., Proteomic characterization of two snake venoms: Naja naja
atra and Agkistrodon halys. Biochemical Journal, 2004. 384(1): p. 119-127.
10. Dutta, S., et al., Proteomic analysis to unravel the complex venom
proteome of eastern India Naja naja: Correlation of venom composition
with its biochemical and pharmacological properties. Journal of
proteomics, 2017. 156: p. 29-39.
11. Huang, H.-W., et al., Cobra venom proteome and glycome determined from
individual snakes of Naja atra reveal medically important dynamic range
62
and systematic geographic variation. Journal of proteomics, 2015. 128: p.
92-104.
12. Condrea, E., et al., Effect of modification of one histidine residue on the
enzymatic and pharmacological properties of a toxic phospholipase A2
from Naja nigricollis snake venom and less toxic phospholipases A2 from
Hemachatus haemachatus and Naja naja atra snake venoms. Toxicon, 1981.
19(1): p. 61-71.
13. Ownby, C.L., et al., Lysine 49 phospholipase A2 proteins. Toxicon, 1999.
37(3): p. 411-445.
14. Chang, L.-S., et al., A novel neurotoxin, cobrotoxin b, from Naja naja atra
(Taiwan cobra) venom: purification, characterization, and gene
organization. The Journal of Biochemistry, 1997. 122(6): p. 1252-1259.
15. Roy, A., et al., Structural and Functional Characterization of a Novel
Homodimeric Three-finger Neurotoxin from the Venom of Ophiophagus
hannah (King Cobra)*♦. Journal of Biological Chemistry, 2010. 285(11):
p. 8302-8315.
16. Liu, C.-C., et al., Pathogenesis of local necrosis induced by Naja atra
venom: Assessment of the neutralization ability of Taiwanese freeze-dried
neurotoxic antivenom in animal models. PLoS neglected tropical diseases,
2020. 14(2): p. e0008054.
17. Wu, P.-L., et al., The role of sulfatide lipid domains in the membrane poreforming
activity of cobra cardiotoxin. Biochimica et Biophysica Acta
(BBA)-Biomembranes, 2012. 1818(5): p. 1378-1385.
18. Wang, C.-H., et al., Cobra cardiotoxin-induced cell death in fetal rat
cardiomyocytes and cortical neurons: different pathway but similar cell
surface target. Toxicon, 2005. 46(4): p. 430-440.
19. Takacs, Z., K.C. Wilhelmsen, and S. Sorota, Cobra (Naja spp.) nicotinic
acetylcholine receptor exhibits resistance to erabu sea snake (Laticauda
semifasciata) short-chain α-neurotoxin. Journal of molecular evolution,
2004. 58(5): p. 516-526.
20. Ogawa, Y., et al., Complete amino acid sequence and phylogenetic analysis
of a long-chain neurotoxin from the venom of the African banded water
cobra, Boulengerina annulata. Toxicon, 2004. 43(7): p. 855-858.
21. Nirthanan, S. and M.C. Gwee, Three-finger α-neurotoxins and the nicotinic
acetylcholine receptor, forty years on. Journal of pharmacological sciences,
2004. 94(1): p. 1-17.
22. Brunton, T.L. and J. Fayrer, II. On the nature and physiological action of
the poison of Naja tripudians and other Indian venomous snakes.—Part I.
63
Proceedings of the Royal Society of London, 1873. 21(139-147): p. 358-
374.
23. Condrea, E., Membrane-active polypeptides from snake venom:
cardiotoxins and haemocytotoxins. Experientia, 1974. 30(2): p. 121-129.
24. Sun, J. and M. Walker, Actions of cardiotoxins from the southern Chinese
cobra (Naja naja atra) on rat cardiac tissue. Toxicon, 1986. 24(3): p. 233-
245.
25. Ownby, C.L., J.E. Fletcher, and T.R. Colberg, Cardiotoxin 1 from cobra
(Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon,
1993. 31(6): p. 697-709.
26. Chen, K.-C., et al., The mechanism of cytotoxicity by Naja naja atra
cardiotoxin 3 is physically distant from its membrane-damaging effect.
Toxicon, 2007. 50(6): p. 816-824.
27. Liu, B.-S., Study on Venom Proteome of Asiatic Cobras and its Application
on Novel Antivenom Development, in Institute of Biotechnology. 2019,
National Tsing Hua University: Hsinchu. p. 148.
28. Jayaraman, G., et al., Elucidation of the solution structure of cardiotoxin
analogue V from the Taiwan cobra (Naja naja atra)—identification of
structural features important for the lethal action of snake venom
cardiotoxins. Protein science, 2000. 9(4): p. 637-646.
29. Wang, P.-C., et al., Consensus sequence L/PKSSLL mimics crucial epitope
on Loop III of Taiwan cobra cardiotoxin. Biochemical and biophysical
research communications, 2009. 387(3): p. 617-622.
30. 100 Years of Glory and Century of Continuity, A Centennial History of
Government-Manufactured Vaccine Production in Taiwan. 2014.
31. Ming-Yi, L. and H. Ruey-Jen, Toxoids and antivenoms of venomous
snakes in Taiwan. Journal of Toxicology: Toxin Reviews, 1997. 16(3): p.
163-175.
32. Chen, J.-C., et al., Risk of immediate effects from F (ab) 2 bivalent
antivenin in Taiwan. Wilderness & environmental medicine, 2000. 11(3):
p. 163-167.
33. Ratanabanangkoon, K., et al., A simple and novel strategy for the
production of a pan-specific antiserum against elapid snakes of Asia. PLOS
neglected tropical diseases, 2016. 10(4): p. e0004565.
34. de la Rosa, G., et al., Horse immunization with short-chain consensus α-
neurotoxin generates antibodies against broad spectrum of elapid
venomous species. Nature communications, 2019. 10(1): p. 1-8.
64
35. Bermúdez-Méndez, E., et al., Innovative immunization strategies for
antivenom development. Toxins, 2018. 10(11): p. 452.
36. Suntrarachun, S., et al., cDNA cloning, sequencing, and expression of α-
and β-neurotoxins from Thai-Malayan krait. Indian J. Biotechnol, 2010. 9:
p. 31-37.
37. Cao, Y., et al., Bioinformatics-based design of novel antigenic B-cell linear
epitopes of Deinagkistrodon acutus venom. Eur Rev Med Pharmacol Sci,
2016. 20(4): p. 781-787.
38. Liu, M., DNA vaccines: a review. Journal of internal medicine, 2003.
253(4): p. 402-410.
39. Hasson, S.S.A.A., Generation of antibodies against disintegrin and
cysteine-rich domains by DNA immunization: An approach to neutralize
snake venom-induced haemorrhage. Asian Pacific Journal of Tropical
Biomedicine, 2017. 7(3): p. 198-207.
40. Ramos, H.R., et al., A heterologous multiepitope DNA prime/recombinant
protein boost immunisation strategy for the development of an antiserum
against Micrurus corallinus (coral snake) venom. PLoS neglected tropical
diseases, 2016. 10(3): p. e0004484.
41. Dhama, K., et al., DNA vaccines and their applications in veterinary
practice: current perspectives. Veterinary research communications, 2008.
32(5): p. 341-356.
42. Minke, J., et al., Use of DNA and recombinant canarypox viral (ALVAC)
vectors for equine herpes virus vaccination. Veterinary immunology and
immunopathology, 2006. 111(1-2): p. 47-57.
43. Lunn, D., et al., Antibody responses to DNA vaccination of horses using
the influenza virus hemagglutinin gene. Vaccine, 1999. 17(18): p. 2245-
2258.
44. Harrison, R., et al., Antibody from mice immunized with DNA encoding
the carboxyl‐disintegrin and cysteine‐rich domain (JD9) of the
haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal
component of viper venom. Clinical & Experimental Immunology, 2000.
121(2): p. 358-363.
45. Wagstaff, S.C., et al., Bioinformatics and multiepitope DNA immunization
to design rational snake antivenom. PLoS medicine, 2006. 3(6): p. e184.
46. Laustsen, A.H., Antivenom in the Age of Recombinant DNA Technology,
in Handbook of Venoms and Toxins of Reptiles. 2021, CRC Press. p. 499-
510.
65
47. Mcauley, A., et al., Contributions of a disulfide bond to the structure,
stability, and dimerization of human IgG1 antibody CH3 domain. Protein
Science, 2008. 17(1): p. 95-106.
48. Vinther, T.N., et al., Insulin analog with additional disulfide bond has
increased stability and preserved activity. Protein Science, 2013. 22(3): p.
296-305.
49. Bulaj, G., Formation of disulfide bonds in proteins and peptides.
Biotechnology advances, 2005. 23(1): p. 87-92.
50. Depuydt, M., J. Messens, and J.-F. Collet, How proteins form disulfide
bonds. Antioxidants & redox signaling, 2011. 15(1): p. 49-66.
51. de Marco, A., et al., Chaperone-based procedure to increase yields of
soluble recombinant proteins produced in E. coli. BMC biotechnology,
2007. 7(1): p. 1-9.
52. Vasina, J.A. and F. Baneyx, Expression of Aggregation-Prone
Recombinant Proteins at Low Temperatures: A Comparative Study of
theEscherichia coli cspAandtacPromoter Systems. Protein expression and
purification, 1997. 9(2): p. 211-218.
53. Weickert, M.J., et al., Stabilization of apoglobin by low temperature
increases yield of soluble recombinant hemoglobin in Escherichia coli.
Applied and environmental microbiology, 1997. 63(11): p. 4313-4320.
54. San-Miguel, T., P. Pérez-Bermúdez, and I. Gavidia, Production of soluble
eukaryotic recombinant proteins in E. coli is favoured in early log-phase
cultures induced at low temperature. Springerplus, 2013. 2(1): p. 1-4.
55. Malavasi, N., et al., Protein refolding at high pressure: optimization using
eGFP as a model. Process biochemistry, 2011. 46(2): p. 512-518.
56. Lee, S.H., et al., Effects of solutes on solubilization and refolding of
proteins from inclusion bodies with high hydrostatic pressure. Protein
science, 2006. 15(2): p. 304-313.
57. Chura-Chambi, R.M., et al., Refolding of endostatin from inclusion bodies
using high hydrostatic pressure. Analytical Biochemistry, 2008. 379(1): p.
32-39.
58. De Sutter, K., et al., Production of enzymatically active rat protein disulfide
isomerase in Escherichia coli. Gene, 1994. 141(2): p. 163-170.
59. Saez, N.J., et al., A strategy for production of correctly folded disulfiderich
peptides in the periplasm of E. coli, in Heterologous Gene Expression
in E. coli. 2017, Springer. p. 155-180.
66
60. Klint, J.K., et al., Production of recombinant disulfide-rich venom peptides
for structural and functional analysis via expression in the periplasm of E.
coli. PloS one, 2013. 8(5): p. e63865.
61. Baneyx, F., Recombinant protein expression in Escherichia coli. Current
opinion in biotechnology, 1999. 10(5): p. 411-421.
62. Morrow, J.F., et al., Replication and Transcription of Eukaryotic DNA in
Esherichia coli. Proceedings of the National Academy of Sciences, 1974.
71(5): p. 1743-1747.
63. Ratzkin, B. and J. Carbon, Functional expression of cloned yeast DNA in
Escherichia coli. Proceedings of the National Academy of Sciences, 1977.
74(2): p. 487-491.
64. Chen, R., Bacterial expression systems for recombinant protein production:
E. coli and beyond. Biotechnology advances, 2012. 30(5): p. 1102-1107.
65. Çelik, E. and P. Çalık, Production of recombinant proteins by yeast cells.
Biotechnology advances, 2012. 30(5): p. 1108-1118.
66. Mattanovich, D., et al., Recombinant protein production in yeasts.
Recombinant gene expression, 2012: p. 329-358.
67. Ciarkowska, A. and A. Jakubowska, Pichia pastoris as an expression
system for recombinant protein production. Postepy biochemii, 2013.
59(3): p. 315-321.
68. Almo, S.C. and J.D. Love, Better and faster: improvements and
optimization for mammalian recombinant protein production. Current
opinion in structural biology, 2014. 26: p. 39-43.
69. Brondyk, W.H., Selecting an appropriate method for expressing a
recombinant protein. Methods in enzymology, 2009. 463: p. 131-147.
70. Huang, S.Y., et al., Global disulfide bond profiling for crude snake venom
using dimethyl labeling coupled with mass spectrometry and RADAR
algorithm. Analytical chemistry, 2014. 86(17): p. 8742-8750.
71. Huang, S.Y., et al., Assignment of disulfide-linked peptides using
automatic a1 ion recognition. Analytical chemistry, 2008. 80(23): p. 9135-
9140.
72. Micsonai, A., et al., BeStSel: a web server for accurate protein secondary
structure prediction and fold recognition from the circular dichroism
spectra. Nucleic acids research, 2018. 46(W1): p. W315-W322.
73. Greenfield, N.J. and G.D. Fasman, Computed circular dichroism spectra
for the evaluation of protein conformation. Biochemistry, 1969. 8(10): p.
4108-4116.
67
74. Shi, R., et al., Imidazole as a catalyst for in vitro refolding of enhanced
green fluorescent protein. Archives of biochemistry and biophysics, 2007.
459(1): p. 122-128.
75. Sreerama, N., S.Y. Venyaminov, and R.W. Woody, Estimation of the
number of α-helical and β-strand segments in proteins using circular
dichroism spectroscopy. Protein science, 1999. 8(2): p. 370-380.
76. Sreerama, N. and R.W. Woody, A self-consistent method for the analysis
of protein secondary structure from circular dichroism. Analytical
biochemistry, 1993. 209(1): p. 32-44.
77. Abdul-Gader, A., A.J. Miles, and B.A. Wallace, A reference dataset for the
analyses of membrane protein secondary structures and transmembrane
residues using circular dichroism spectroscopy. Bioinformatics, 2011.
27(12): p. 1630-1636.
78. Mao, Y.-C., et al., Naja atra snakebite in Taiwan. Clinical Toxicology, 2018.
56(4): p. 273-280.
79. Hung, D.-Z., M.-Y. Liau, and S.-Y. Lin-Shiau, The clinical significance of
venom detection in patients of cobra snakebite. Toxicon, 2003. 41(4): p.
409-415.
80. Gutiérrez, J., et al., Comparative study of the edema-forming activity of
Costa Rican snake venoms and its neutralization by a polyvalent antivenom.
Comparative Biochemistry and Physiology Part C: Comparative
Pharmacology, 1986. 85(1): p. 171-175.
81. Foroushani, N.S., et al., Developing recombinant phospholipase D1
(rPLD1) toxoid from Iranian Hemiscorpius lepturus scorpion and its
protective effects in BALB/c mice. Toxicon, 2018. 152: p. 30-36.
82. Chang, J.-Y., T.K.S. Kumar, and C. Yu, Unfolding and refolding of
cardiotoxin III elucidated by reversible conversion of the native and
scrambled species. Biochemistry, 1998. 37(19): p. 6745-6751.
83. Huang, S.-Y., et al., Monitoring the disulfide bonds of folding isomers of
synthetic CTX A3 polypeptide using MS-based technology. Toxins, 2019.
11(1): p. 52.
84. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular
dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,
2005. 1751(2): p. 119-139.
85. Dubovskii, P.V., et al., Antibacterial activity of cardiotoxin-like basic
polypeptide from cobra venom. Bioorganic & medicinal chemistry letters,
2020. 30(3): p. 126890.
68
86. Sun, Y.-J., et al., Crystal structure of cardiotoxin V from Taiwan cobra
venom: pH-dependent conformational change and a novel membranebinding
motif identified in the three-finger loops of P-type cardiotoxin.
Biochemistry, 1997. 36(9): p. 2403-2413.
87. Kao, P.-H., S.-R. Lin, and L.-S. Chang, Interaction of Naja naja atra
cardiotoxin 3 with H-trisaccharide modulates its hemolytic activity and
membrane-damaging activity. Toxicon, 2010. 55(7): p. 1387-1395.
88. Chien, K.-Y., et al., Two distinct types of cardiotoxin as revealed by the
structure and activity relationship of their interaction with zwitterionic
phospholipid dispersions. Journal of biological chemistry, 1994. 269(20):
p. 14473-14483.
89. Rangel-Santos, A. and I. Mota, Effect of heating on the toxic, immunogenic
and immunosuppressive activities of Crotalus durissus terrificus venom.
Toxicon, 2000. 38(10): p. 1451-1457.
90. Rebbouh, F., M.-F. Martin-Eauclaire, and F. Laraba-Djebari, Chitosan
nanoparticles as a delivery platform for neurotoxin II from Androctonus
australis hector scorpion venom: Assessment of toxicity and
immunogenicity. Acta tropica, 2020. 205: p. 105353.
91. Leong, P.K., et al., Immunological cross-reactivity and neutralization of the
principal toxins of Naja sumatrana and related cobra venoms by a Thai
polyvalent antivenom (Neuro Polyvalent Snake Antivenom). Acta tropica,
2015. 149: p. 86-93.
92. Sheng, Z., et al., Electroporation enhances protective immune response of
a DNA vaccine against Japanese encephalitis in mice and pigs. Vaccine,
2016. 34(47): p. 5751-5757.
93. Yu, R., et al., Comparative immunogenicity of the tetanus toxoid and
recombinant tetanus vaccines in mice, rats, and cynomolgus monkeys.
Toxins, 2016. 8(7): p. 194.
94. Liu, B.-S., et al., Identification of immunoreactive peptides of toxins to
simultaneously assess the neutralization potency of antivenoms against
neurotoxicity and cytotoxicity of naja atra venom. Toxins, 2018. 10(1): p.
10.
95. Jahnke, W., et al., Structure of cobra cardiotoxin CTX I as derived from
nuclear magnetic resonance spectroscopy and distance geometry
calculations. Journal of molecular biology, 1994. 240(5): p. 445-458.
96. Lee, S.-C., et al., Endocytotic routes of cobra cardiotoxins depend on
spatial distribution of positively charged and hydrophobic domains to
69
target distinct types of sulfated glycoconjugates on cell surface. Journal of
Biological Chemistry, 2014. 289(29): p. 20170-20181.
97. Sue, S.-C., et al., Dynamic characterization of the water binding loop in the
P-type cardiotoxin: implication for the role of the bound water molecule.
Biochemistry, 2001. 40(43): p. 12782-12794.
98. Jang, J.-Y., et al., Comparison of the hemolytic activity and solution
structures of two snake venom cardiotoxin analogues which only differ in
their N-terminal amino acid. Biochemistry, 1997. 36(48): p. 14635-14641.
99. Chen, T.-S., et al., Structural difference between group I and group II cobra
cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline
conformation on three-fingered toxins. Biochemistry, 2005. 44(20): p.
7414-7426.
(此全文20260831後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *