|
1. W. Denk, K. L. Briggman, M. Helmstaedter, Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci. 13, 351-358 (2012). 2. C. S. Xu et al., Enhanced FIB-SEM systems for large-volume 3D imaging. Elife, e25916 (2017). 3. Z. Zheng et al., A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730-743 (2018). 4. E. J. Guggenheim et al., Comparison of confocal and super-resolution reflectance imaging of metal oxide nanoparticles. PLoS ONE, e0159980 (2016). 5. J. Als-Nielsen and D. McMorrow, “Sources of X-rays” in Elements of Modern X-ray Physics, John Wiley & Sons, New York (2001), pp. 29¬-60. 6. G. C. Yin et al., Energy-tunable transmission X-ray microscope for differential contrast imaging with near 60 nm resolution tomography. Appl. Phys. Lett. 88, 241115 (2006). 7. J. F. Hainfeld, R. N. Eisen, R. R. Tubbs, and R. D. Powell, Enzymatic Metallography: A Simple New Staining Method. Microsc. Microanal.; 8 (Suppl. 2: Proceedings); Lyman, C. E., Albrecht, R. M., Carter, C. B., Dravid, V. P., Herman, B., and Schatten, H. (Eds.) Cambridge University Press, New York, NY, 916 CD (2002). 8. J. F. Hainfeld, R. D. Powell, G. W. Hacker, “Nanoparticle Molecular Labels” in Nanobiotechnology, C. A. Mirkin and C. M. Niemeyer, Eds. (Wiley-VCH, 2004), pp. 353-386.
9. R. Tubbs, J. Pettay, R. Powell, D. G. Hicks, P. Roche, W. Powell, T. Grogan, J. F. Hainfeld, High-resolution immunophenotyping of subcellular compartments in tissue microarrays by enzyme metallography. Appl. Immunohistochem. Mol. Morphol. 13, 371-375 (2005). 10. W. Liu, D. Mitra, R. Powell, R. Tubbs, J. Pettay, J. Hainfeld, Enzyme Metallography Silver Deposition for HRP Detection. Presented at ASCB (2007). 11. M. A. Raza, Z. Kanwal, A. Rauf, A. N. Sabri, S. Riaz, S. Naseem, Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials (Basel, Switzerland) 6, 74. (2016). 12. R. C. Switzer 3rd., Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol. 28, 70-83 (2000). 13. K. Hirakawa and S. Sano, Platinum nanoparticle catalyst scavenges hydrogen peroxide generated from hydroquinone. BCSJ 82, 1299-1303 (2009). 14. E. Brini et al., How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 117, 12385-12414 (2017). 15. P. Ellis, Gold in photography. Gold Bull 8, 7-12 (1975). 16. D. Depannemaecker et al., Gold nanoparticles for X-ray microtomography of neurons. ACS Chem Neurosci. 10, 3404-3408 (2019). 17. X. Liu, M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces. 58, 3-7 (2007). 18. Y. Shiho and Y. Tomokazu, Structure and catalytic activities of gold nanoparticles protected by homogeneous polyoxyethylene alkyl ether type nonionic surfactants. Langmuir 35, 5241-5249 (2019). 19. S. Bushong, “Part II: X-Radiation” in Radiologic science for technologists, 11th edition. (Mosby, 2016), pp. 86-171. 20. Y. C. Kim, H. G. Lee, K. A. Han, D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci. 27, 7640-7647 (2007). 21. Y. Aso, D. Hattori, Y. Yu et al., The neuronal architecture of the mushroom body provides a logic for associative learning. Elife, e04577 (2014). 22. J. H. Hubbell, “Radiation Physics” in Encyclopedia of Physical Science and Technology, 3rd edition. (2003). pp. 561-580. 23. T. Y. Chen, Y. T. Chen, C. L. Wang, I. M. Kempson, W. K. Lee, Y. S. Chu et al., Full-field microimaging with 8 keV X-rays achieves a spatial resolution better than 20 nm. Opt Express. 19, 19919-19924 (2011). 24. R. A Kohler, A segmentation system based on thresholding, Computer Graphics and Image Processing 15, 319-338 (1981). 25. A. S. Chiang et al., Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11 (2011). 26. S. Y. Takemura et al., A connectome of a learning and memory center in the adult drosophila brain. Elife, e26975 (2017). 27. Y. Hwu, G. Margaritondo, A. S. Chiang, Q&A: why use synchrotron x-ray tomography for multi-scale connectome mapping? BMC Biol. 15, 122 (2017). 28. A. L. Chin et al., A synchrotron X-ray imaging strategy to map large animal brains. Chin. J. Phys. 65, 24-32 (2020). 29. P. V. Rodrigues et al., Illuminating the brain with X-rays: Contributions and future perspectives of high-resolution microtomography to neuroscience. Front. Neurosci., 15, 286 (2021). 30. J. F. Pasternak and T. A. Woolsey, On the “selectivity” of the Golgi-Cox method. J Comp Neur. 160, 307-312 (1975). 31. Y. C. Tseng et al., Characterization of Golgi stain for X-ray imaging. (2017). 32. R. Tubbs, J. Pettay, D. Hicks, M. Skacel, R. Powell, T. Grogan, J. Hainfeld, Novel bright field molecular morphology methods for detection of HER2 gene amplification. J. Mol. Histol., 35, 589-594 (2004). 33. R. D. Powell, J. D. Pettay, W. C. Powell, P. C. Roche, T. M. Grogan, J. F. Hainfeld, R. R. Tubbs, Metallographic in situ hybridization. Hum. Pathol., 38, 1145-1159 (2007). 34. B. D. Metscher and G. B. Müller, MicroCT for molecular imaging: Quantitative visualization of complete three‐dimensional distributions of gene products in embryonic limbs. Dev Dyn. 240, 2301-2308 (2011). 35. S. Tohru, A. Shigendo, T. Takahiro, and H. Masataka, Selective concentration of gold in water to a polystyrene-embedded fiber disk with polyoxyethylene(10) -p-isononylphenyl ether. J Chromatogr A 932, 159-163 (2001). 36. M. C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293-346 (2004). 37. A. T. Kuan, J. S. Phelps, L. A. Thomas et al., Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat Neurosci 23, 1637-1643 (2020). 38. P. A. Santi, Light sheet fluorescence microscopy: a review. J Histochem Cytochem. 59, 129-138 (2011). 39. M. Dierolf et al., Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436-439 (2010). 40. A. Couto, M. Alenius, B. J. Dickson, Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol., 15, 1535-1547 (2005). 41. H. H. Lin, C. Y. Lin, A. S. Chiang, Internal representations of smell in the Drosophila brain. J. Biomed. Sci., 14, 453-459 (2007). 42. J. Li et al., Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373-386 (2020). 43. E. Downs-Kelly et al., Analytical validation and interobserver reproducibility of EnzMet GenePro. The American Journal of Surgical Pathology 29, 1505-1511 (2005). 44. I. I. Torres-Vazquez et al., EnzMet™: An enzymatic metallography reagent for accurately delineating neuronal boundaries for segmenting gap junction-coupled neurons in their three-dimensional space. Microscopy and Microanalysis 18, 660-661 (2012). 45. W. P. Faulk and G. M. Taylor, Communication to the editors: An immunocolloid method for the electron microscope, Immunochemistry 8, 1081-1083 (1971). 46. Y. Hua, P. Laserstein, M. Helmstaedter, Large-volume en-bloc staining for electron microscopy-based connectomics. Nat Commun 6, 7923 (2015). 47. Y. Hwu, W. L. Tsai, H. M. Chang, H. I. Yeh, P. C. Hsu, Y. C. Yang et al., Imaging cells in tissues with refractive index radiology. Biophys J. 87, 4180-4187 (2004). 48. Y. Hwu, W. L. Tsai, J. H. Je, S. K. Seol, B. Kim, A. Groso et al., Synchrotron microangiography with no contrast agent. Phys Med Biol. 49, 501-508 (2004). 49. H. R. Wu, S. T. Chen, Y. S. Chu, R. Conley, N. Bouet, C. C. Chien et al., Nanoresolution radiology of neurons. J Phys D. 45, 242001 (2012). 50. S. R. Wu, Y. Hwu, G. Margaritondo, Hard-X-ray zone plates: recent progress. Materials 5, 1752-1773 (2012). 51. S. Matsuyama, H. Nakamori, T. Goto, T. Kimura, K. P. Khakurel, and Y. Kohmura, et al., Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors. Sci Rep. 6, 24801 (2016). 52. W. A. Kalender, “Post-processing” in Computed tomography: Fundamentals, System Technology, Image Quality, Applications. (Springer, 2005), pp. 306-360. 53. S. H. Geyer, T. J. Mohun, W. J. Weninger, Visualizing vertebrate embryos with episcopic 3D imaging techniques. ScientificWorldJournal 9, 1423-1437 (2009). 54. L. G. Shapiro and G. C. Stockman, “Image Segmentation” in Computer Vision. (Prentice-Hall, 2001), pp. 279-325. 55. S. Zachow, M. Zilske, H. C. Hege, 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing. ZIB-Report, 07-41 (2007). 56. D. L. Pham, C. Xu, J. L. Prince, Current methods in medical image segmentation. Annual Review of Biomedical Engineering 2, 315–337 (2000). 57. D. Guo et al., Degraded image semantic segmentation with dense-gram networks. IEEE Transactions on Image Processing 29, 782-795 (2020). 58. K. J. Batenburg and J. Sijbers, Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognition 42, 2297-2305 (2009). 59. S. Uchida, Image processing and recognition for biological images. Dev Growth Differ. 55, 523-549 (2013). 60. S. Jensen et al., Automated thresholding and analysis of MicroCT scanned bread dough. Journal of Microscopy 256, 100-110 (2014).
|