帳號:guest(3.15.225.110)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳亮宇
作者(外文):Chen, Liang-Yu
論文名稱(中文):果蠅全頭部X-射線特定基因表達重建影像
論文名稱(外文):X-ray Reconstruction of Whole-Head Gene Expression in Drosophila
指導教授(中文):江安世
指導教授(外文):Chiang, Ann-Shyn
口試委員(中文):胡宇光
高甫仁
口試委員(外文):Hu, Yu-Kuang
Kao, Fu-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:108080585
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:36
中文關鍵詞:酵素金相學免疫染色優化同步加速器X-射線斷層造影原位腦神經網路圖譜
外文關鍵詞:Enzyme Metallographysynchrotron X-ray tomographyin situ neural circuit reconstruction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:242
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要探討我們研究團隊所發展的免疫染色結合同步加速器X-射線光源技術於果蠅的應用,透過這個技術,我們可以省略繁雜的解剖程序,保持果蠅頭部的完整性而得到特定的神經結構影像。我們主要聚焦在描繪和長期記憶相關的神經迴路,追蹤所有與這些記憶細胞相關的連結,進而繪製出完整的三維神經網路圖譜。繪製這些和記憶相關的神經結構圖譜有助於我們對突觸連接與神經形態的認識,並了解其功能以及在組織中所扮演的角色。我們使用國家同步輻射中心X-射線高強度且準直的光源,並藉由改進樣品的製備流程,以酵素金相學染色的高靈敏度特性,檢測核醣核酸序列以及其他特定的結合靶蛋白,並透過辣根過氧化物酶與金屬基質在特定基因表達上的化學反應,還原出金屬奈米粒子沉澱。我們根據實驗所得的藥劑條件、浸泡時間、酸鹼值以及添加劑建立一套新的染色流程,在無需進行大範圍的解剖下,達成奈米等級的解析目標。本研究提供了具備高度穩定性與可再現性的染色方法,以及果蠅嗅覺系統基因表達的X-射線原位重組影像,可為未來的神經科學研究進行更寬廣的發展與應用。
Three-dimensional reconstruction of neuronal wirings in the brain, which consist of cellular projections and synaptic connections, helps us understand the operation of nervous system in normal and disease individuals. Here, we show that synchrotron X-ray tomography enables us to image metal labeled fine structures within the whole Drosophila heads without complicated dissection. Enzyme Metallography (EnzMet) is a high sensitivity biological labeling and staining method for the detection of DNA, RNA and proteins. We developed a protocol using EnzMet − a peroxidase reducing a metal substrate to give enhanced staining – to label in situ gene expressions within the whole Drosophila head. We tested separate conditions to optimize EnzMet reaction, including measuring performance, reaction time, pH value, and additives at several levels. Imaging the metal labeled samples with the brilliance and highly collimated synchrotron X-ray, we have successfully reconstructed gene expression patterns and neuropilar structures in the whole Drosophila head at single neuron resolution. Comparing to the classical fluorescence confocal microscopy, the synchrotron X-ray imaging provides improved z-resolution and high-speed reconstruction of fine structures within intact large tissues, a feature critical for 3D reconstruction of connectomes in big brains.
Abstract in Chinese………………………………………………………………i
Abstract in English………………………………………………………………ii Acknowledgements………………………………………………………………iii
Table of Contents……………………………………………………………………iv
Chapter 1: Introduction…………………………………………………………1
Chapter 2: Materials and Methods………………………………………………4
2.1 Drosophila Husbandry………………………………………………………4
2.2 Drosophila Transgenesis……………………………………………………4
2.3 Tissue Fixation & Staining……………………………………………………4
2.4 Synchrotron X-ray Tomography & Imaging…………………………………5
2.5 Image Reconstruction……………………………………………………5
Chapter 3: Results………………………………………………………………6
3.1 Sample preparation and staining testing…………………………………6
3.1.1 Use of metals to identify peroxide reductases in tissues…………6
3.1.2 The influence of time on enzyme activity………………………………6
3.1.3 Reagent optimization for catalytic property and deposition efficiency…7
3.1.4 The pH values of the phenolic solution in the detection of AgNPs…8
3.1.5 Improvement of penetration by providing a decrease in cohesion……8
3.1.6 The polymer application in gold toning process………………………9
3.2 Accelerated X-ray Observation of Neurons (AXON) image processing…10
3.2.1 The X-ray phase imaging of nervous pathways………………………10
3.2.2 Synchrotron radiation-based tomographic reconstruction…………11
Chapter 4: Discussion……………………………………………………………12
List of Figures……………………………………………………………………16
References………………………………………………………………………26
Appendix………………………………………………………………………33
1. W. Denk, K. L. Briggman, M. Helmstaedter, Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci. 13, 351-358 (2012).
2. C. S. Xu et al., Enhanced FIB-SEM systems for large-volume 3D imaging. Elife, e25916 (2017).
3. Z. Zheng et al., A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730-743 (2018).
4. E. J. Guggenheim et al., Comparison of confocal and super-resolution reflectance imaging of metal oxide nanoparticles. PLoS ONE, e0159980 (2016).
5. J. Als-Nielsen and D. McMorrow, “Sources of X-rays” in Elements of Modern X-ray Physics, John Wiley & Sons, New York (2001), pp. 29¬-60.
6. G. C. Yin et al., Energy-tunable transmission X-ray microscope for differential contrast imaging with near 60 nm resolution tomography. Appl. Phys. Lett. 88, 241115 (2006).
7. J. F. Hainfeld, R. N. Eisen, R. R. Tubbs, and R. D. Powell, Enzymatic Metallography: A Simple New Staining Method. Microsc. Microanal.; 8 (Suppl. 2: Proceedings); Lyman, C. E., Albrecht, R. M., Carter, C. B., Dravid, V. P., Herman, B., and Schatten, H. (Eds.) Cambridge University Press, New York, NY, 916 CD (2002).
8. J. F. Hainfeld, R. D. Powell, G. W. Hacker, “Nanoparticle Molecular Labels” in Nanobiotechnology, C. A. Mirkin and C. M. Niemeyer, Eds. (Wiley-VCH, 2004), pp. 353-386.

9. R. Tubbs, J. Pettay, R. Powell, D. G. Hicks, P. Roche, W. Powell, T. Grogan, J. F. Hainfeld, High-resolution immunophenotyping of subcellular compartments in tissue microarrays by enzyme metallography. Appl. Immunohistochem. Mol. Morphol. 13, 371-375 (2005).
10. W. Liu, D. Mitra, R. Powell, R. Tubbs, J. Pettay, J. Hainfeld, Enzyme Metallography Silver Deposition for HRP Detection. Presented at ASCB (2007).
11. M. A. Raza, Z. Kanwal, A. Rauf, A. N. Sabri, S. Riaz, S. Naseem, Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials (Basel, Switzerland) 6, 74. (2016).
12. R. C. Switzer 3rd., Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol. 28, 70-83 (2000).
13. K. Hirakawa and S. Sano, Platinum nanoparticle catalyst scavenges hydrogen peroxide generated from hydroquinone. BCSJ 82, 1299-1303 (2009).
14. E. Brini et al., How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 117, 12385-12414 (2017).
15. P. Ellis, Gold in photography. Gold Bull 8, 7-12 (1975).
16. D. Depannemaecker et al., Gold nanoparticles for X-ray microtomography of neurons. ACS Chem Neurosci. 10, 3404-3408 (2019).
17. X. Liu, M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces. 58, 3-7 (2007).
18. Y. Shiho and Y. Tomokazu, Structure and catalytic activities of gold nanoparticles protected by homogeneous polyoxyethylene alkyl ether type nonionic surfactants. Langmuir 35, 5241-5249 (2019).
19. S. Bushong, “Part II: X-Radiation” in Radiologic science for technologists, 11th edition. (Mosby, 2016), pp. 86-171.
20. Y. C. Kim, H. G. Lee, K. A. Han, D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci. 27, 7640-7647 (2007).
21. Y. Aso, D. Hattori, Y. Yu et al., The neuronal architecture of the mushroom body provides a logic for associative learning. Elife, e04577 (2014).
22. J. H. Hubbell, “Radiation Physics” in Encyclopedia of Physical Science and Technology, 3rd edition. (2003). pp. 561-580.
23. T. Y. Chen, Y. T. Chen, C. L. Wang, I. M. Kempson, W. K. Lee, Y. S. Chu et al., Full-field microimaging with 8 keV X-rays achieves a spatial resolution better than 20 nm. Opt Express. 19, 19919-19924 (2011).
24. R. A Kohler, A segmentation system based on thresholding, Computer Graphics and Image Processing 15, 319-338 (1981).
25. A. S. Chiang et al., Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11 (2011).
26. S. Y. Takemura et al., A connectome of a learning and memory center in the adult drosophila brain. Elife, e26975 (2017).
27. Y. Hwu, G. Margaritondo, A. S. Chiang, Q&A: why use synchrotron x-ray tomography for multi-scale connectome mapping? BMC Biol. 15, 122 (2017).
28. A. L. Chin et al., A synchrotron X-ray imaging strategy to map large animal brains. Chin. J. Phys. 65, 24-32 (2020).
29. P. V. Rodrigues et al., Illuminating the brain with X-rays: Contributions and future perspectives of high-resolution microtomography to neuroscience. Front. Neurosci., 15, 286 (2021).
30. J. F. Pasternak and T. A. Woolsey, On the “selectivity” of the Golgi-Cox method. J Comp Neur. 160, 307-312 (1975).
31. Y. C. Tseng et al., Characterization of Golgi stain for X-ray imaging. (2017).
32. R. Tubbs, J. Pettay, D. Hicks, M. Skacel, R. Powell, T. Grogan, J. Hainfeld, Novel bright field molecular morphology methods for detection of HER2 gene amplification. J. Mol. Histol., 35, 589-594 (2004).
33. R. D. Powell, J. D. Pettay, W. C. Powell, P. C. Roche, T. M. Grogan, J. F. Hainfeld, R. R. Tubbs, Metallographic in situ hybridization. Hum. Pathol., 38, 1145-1159 (2007).
34. B. D. Metscher and G. B. Müller, MicroCT for molecular imaging: Quantitative visualization of complete three‐dimensional distributions of gene products in embryonic limbs. Dev Dyn. 240, 2301-2308 (2011).
35. S. Tohru, A. Shigendo, T. Takahiro, and H. Masataka, Selective concentration of gold in water to a polystyrene-embedded fiber disk with polyoxyethylene(10) -p-isononylphenyl ether. J Chromatogr A 932, 159-163 (2001).
36. M. C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293-346 (2004).
37. A. T. Kuan, J. S. Phelps, L. A. Thomas et al., Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat Neurosci 23, 1637-1643 (2020).
38. P. A. Santi, Light sheet fluorescence microscopy: a review. J Histochem Cytochem. 59, 129-138 (2011).
39. M. Dierolf et al., Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436-439 (2010).
40. A. Couto, M. Alenius, B. J. Dickson, Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol., 15, 1535-1547 (2005).
41. H. H. Lin, C. Y. Lin, A. S. Chiang, Internal representations of smell in the Drosophila brain. J. Biomed. Sci., 14, 453-459 (2007).
42. J. Li et al., Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373-386 (2020).
43. E. Downs-Kelly et al., Analytical validation and interobserver reproducibility of EnzMet GenePro. The American Journal of Surgical Pathology 29, 1505-1511 (2005).
44. I. I. Torres-Vazquez et al., EnzMet™: An enzymatic metallography reagent for accurately delineating neuronal boundaries for segmenting gap junction-coupled neurons in their three-dimensional space. Microscopy and Microanalysis 18, 660-661 (2012).
45. W. P. Faulk and G. M. Taylor, Communication to the editors: An immunocolloid method for the electron microscope, Immunochemistry 8, 1081-1083 (1971).
46. Y. Hua, P. Laserstein, M. Helmstaedter, Large-volume en-bloc staining for electron microscopy-based connectomics. Nat Commun 6, 7923 (2015).
47. Y. Hwu, W. L. Tsai, H. M. Chang, H. I. Yeh, P. C. Hsu, Y. C. Yang et al., Imaging cells in tissues with refractive index radiology. Biophys J. 87, 4180-4187 (2004).
48. Y. Hwu, W. L. Tsai, J. H. Je, S. K. Seol, B. Kim, A. Groso et al., Synchrotron microangiography with no contrast agent. Phys Med Biol. 49, 501-508 (2004).
49. H. R. Wu, S. T. Chen, Y. S. Chu, R. Conley, N. Bouet, C. C. Chien et al., Nanoresolution radiology of neurons. J Phys D. 45, 242001 (2012).
50. S. R. Wu, Y. Hwu, G. Margaritondo, Hard-X-ray zone plates: recent progress. Materials 5, 1752-1773 (2012).
51. S. Matsuyama, H. Nakamori, T. Goto, T. Kimura, K. P. Khakurel, and Y. Kohmura, et al., Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors. Sci Rep. 6, 24801 (2016).
52. W. A. Kalender, “Post-processing” in Computed tomography: Fundamentals, System Technology, Image Quality, Applications. (Springer, 2005), pp. 306-360.
53. S. H. Geyer, T. J. Mohun, W. J. Weninger, Visualizing vertebrate embryos with episcopic 3D imaging techniques. ScientificWorldJournal 9, 1423-1437 (2009).
54. L. G. Shapiro and G. C. Stockman, “Image Segmentation” in Computer Vision. (Prentice-Hall, 2001), pp. 279-325.
55. S. Zachow, M. Zilske, H. C. Hege, 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing. ZIB-Report, 07-41 (2007).
56. D. L. Pham, C. Xu, J. L. Prince, Current methods in medical image segmentation. Annual Review of Biomedical Engineering 2, 315–337 (2000).
57. D. Guo et al., Degraded image semantic segmentation with dense-gram networks. IEEE Transactions on Image Processing 29, 782-795 (2020).
58. K. J. Batenburg and J. Sijbers, Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognition 42, 2297-2305 (2009).
59. S. Uchida, Image processing and recognition for biological images. Dev Growth Differ. 55, 523-549 (2013).
60. S. Jensen et al., Automated thresholding and analysis of MicroCT scanned bread dough. Journal of Microscopy 256, 100-110 (2014).
(此全文20250623後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *